Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -104,6 +104,7 @@ def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str
|
|
| 104 |
if not negative:
|
| 105 |
negative = ""
|
| 106 |
return p.replace("{prompt}", positive), n + negative
|
|
|
|
| 107 |
def load_and_prepare_model(model_id):
|
| 108 |
model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
|
| 109 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
|
@@ -210,25 +211,22 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
| 210 |
seed = random.randint(0, MAX_SEED)
|
| 211 |
return seed
|
| 212 |
|
| 213 |
-
def uploadNote():
|
| 214 |
-
|
| 215 |
-
filename= f'tst_B_{seed}.txt'
|
| 216 |
-
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 217 |
with open(filename, "w") as f:
|
| 218 |
-
f.write(f"Realvis 5.0 (Tester
|
| 219 |
f.write(f"Date/time: {timestamp} \n")
|
| 220 |
f.write(f"Prompt: {prompt} \n")
|
| 221 |
f.write(f"Steps: {num_inference_steps} \n")
|
| 222 |
f.write(f"Guidance Scale: {guidance_scale} \n")
|
| 223 |
f.write(f"SPACE SETUP: \n")
|
| 224 |
f.write(f"Use Model Dtype: no \n")
|
| 225 |
-
f.write(f"Model Scheduler: Euler_a all_custom before cuda
|
| 226 |
-
f.write(f"Model VAE: sdxl-vae
|
| 227 |
-
f.write(f"Model UNET: default
|
| 228 |
f.write(f"Model HiDiffusion OFF \n")
|
| 229 |
-
f.write(f"Model do_resize
|
| 230 |
-
f.write(f"
|
| 231 |
-
f.write(f"now added packages.txt \n")
|
| 232 |
upload_to_ftp(filename)
|
| 233 |
|
| 234 |
@spaces.GPU(duration=30)
|
|
@@ -271,7 +269,8 @@ def generate_30(
|
|
| 271 |
options["use_resolution_binning"] = True
|
| 272 |
images = []
|
| 273 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
| 274 |
-
|
|
|
|
| 275 |
for i in range(0, num_images, BATCH_SIZE):
|
| 276 |
batch_options = options.copy()
|
| 277 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
|
@@ -326,7 +325,8 @@ def generate_60(
|
|
| 326 |
options["use_resolution_binning"] = True
|
| 327 |
images = []
|
| 328 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
| 329 |
-
|
|
|
|
| 330 |
for i in range(0, num_images, BATCH_SIZE):
|
| 331 |
batch_options = options.copy()
|
| 332 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
|
@@ -381,7 +381,8 @@ def generate_90(
|
|
| 381 |
options["use_resolution_binning"] = True
|
| 382 |
images = []
|
| 383 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
| 384 |
-
|
|
|
|
| 385 |
for i in range(0, num_images, BATCH_SIZE):
|
| 386 |
batch_options = options.copy()
|
| 387 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
|
|
|
| 104 |
if not negative:
|
| 105 |
negative = ""
|
| 106 |
return p.replace("{prompt}", positive), n + negative
|
| 107 |
+
|
| 108 |
def load_and_prepare_model(model_id):
|
| 109 |
model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
|
| 110 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
|
|
|
| 211 |
seed = random.randint(0, MAX_SEED)
|
| 212 |
return seed
|
| 213 |
|
| 214 |
+
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
| 215 |
+
filename= f'tst_A_{timestamp}.txt'
|
|
|
|
|
|
|
| 216 |
with open(filename, "w") as f:
|
| 217 |
+
f.write(f"Realvis 5.0 (Tester A) \n")
|
| 218 |
f.write(f"Date/time: {timestamp} \n")
|
| 219 |
f.write(f"Prompt: {prompt} \n")
|
| 220 |
f.write(f"Steps: {num_inference_steps} \n")
|
| 221 |
f.write(f"Guidance Scale: {guidance_scale} \n")
|
| 222 |
f.write(f"SPACE SETUP: \n")
|
| 223 |
f.write(f"Use Model Dtype: no \n")
|
| 224 |
+
f.write(f"Model Scheduler: Euler_a all_custom before cuda \n")
|
| 225 |
+
f.write(f"Model VAE: sdxl-vae to bfloat safetensor=false before cuda then attn_proc / scale factor 8 \n")
|
| 226 |
+
f.write(f"Model UNET: default ford442/RealVisXL_V5.0_BF16 \n")
|
| 227 |
f.write(f"Model HiDiffusion OFF \n")
|
| 228 |
+
f.write(f"Model do_resize ON \n")
|
| 229 |
+
f.write(f"added torch to prereq and changed accellerate \n")
|
|
|
|
| 230 |
upload_to_ftp(filename)
|
| 231 |
|
| 232 |
@spaces.GPU(duration=30)
|
|
|
|
| 269 |
options["use_resolution_binning"] = True
|
| 270 |
images = []
|
| 271 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
| 272 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 273 |
+
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
| 274 |
for i in range(0, num_images, BATCH_SIZE):
|
| 275 |
batch_options = options.copy()
|
| 276 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
|
|
|
| 325 |
options["use_resolution_binning"] = True
|
| 326 |
images = []
|
| 327 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
| 328 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 329 |
+
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
| 330 |
for i in range(0, num_images, BATCH_SIZE):
|
| 331 |
batch_options = options.copy()
|
| 332 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
|
|
|
| 381 |
options["use_resolution_binning"] = True
|
| 382 |
images = []
|
| 383 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
| 384 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 385 |
+
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
| 386 |
for i in range(0, num_images, BATCH_SIZE):
|
| 387 |
batch_options = options.copy()
|
| 388 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|