ford442 commited on
Commit
d7fdbc4
·
verified ·
1 Parent(s): 3aa71a9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -11
app.py CHANGED
@@ -113,21 +113,20 @@ def load_and_prepare_model(model_id):
113
  #vae = AutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2',use_safetensors=False)
114
  #vae = AutoencoderKL.from_single_file('https://huggingface.co/ford442/sdxl-vae-bf16/mySLR/myslrVAE_v10.safetensors')
115
  #vaeX = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
116
- #vaeX = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
117
  #vaeX = AutoencoderKL.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
118
  #unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
119
  # vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
120
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
121
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
122
- #sched = EulerAncestralDiscreteScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
123
- #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
124
  #pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
125
  #pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
126
 
127
  pipe = StableDiffusionXLPipeline.from_pretrained(
128
  'ford442/RealVisXL_V5.0_BF16',
129
- # 'ford442/Juggernaut-XI-v11-fp32',
130
- #'SG161222/RealVisXL_V5.0',
131
  #torch_dtype=torch.bfloat16,
132
  add_watermarker=False,
133
  # custom_pipeline="lpw_stable_diffusion_xl",
@@ -136,25 +135,26 @@ def load_and_prepare_model(model_id):
136
  # vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
137
  # vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None, torch_dtype=torch.float32),
138
  # vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16",repo_type='model',safety_checker=None),
139
- vae=AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae').to(torch.bfloat16),
140
  #unet=pipeX.unet,
141
- scheduler = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear"),
142
  # scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
143
  #scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
144
  )
145
-
146
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
147
  #pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
148
  #pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler', algorithm_type='sde-dpmsolver++')
149
- #pipe.vae = vaeX #.to(torch.bfloat16)
150
  #pipe.unet = unetX
151
  #pipe.vae.do_resize=False
152
- #pipe.scheduler = sched
153
  #pipe.vae=vae.to(torch.bfloat16)
154
  #pipe.unet=pipeX.unet
155
  #pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
156
 
157
  pipe.to(device)
 
 
 
158
  pipe.to(torch.bfloat16)
159
 
160
  #apply_hidiffusion(pipe)
@@ -222,7 +222,7 @@ def uploadNote():
222
  f.write(f"Guidance Scale: {guidance_scale} \n")
223
  f.write(f"SPACE SETUP: \n")
224
  f.write(f"Use Model Dtype: no \n")
225
- f.write(f"Model Scheduler: Euler_a custom before cuda \n")
226
  f.write(f"Model VAE: juggernaut to bfloat before cuda \n")
227
  f.write(f"Model UNET: default ford442/RealVisXL_V5.0_BF16 \n")
228
  f.write(f"Model HiDiffusion OFF \n")
 
113
  #vae = AutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2',use_safetensors=False)
114
  #vae = AutoencoderKL.from_single_file('https://huggingface.co/ford442/sdxl-vae-bf16/mySLR/myslrVAE_v10.safetensors')
115
  #vaeX = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
116
+ vaeX = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae') # ,use_safetensors=True FAILS
117
  #vaeX = AutoencoderKL.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
118
  #unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
119
  # vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
120
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
121
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
122
+ #sched = EulerAncestralDiscreteScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
 
123
  #pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
124
  #pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
125
 
126
  pipe = StableDiffusionXLPipeline.from_pretrained(
127
  'ford442/RealVisXL_V5.0_BF16',
128
+ #'ford442/Juggernaut-XI-v11-fp32',
129
+ # 'SG161222/RealVisXL_V5.0',
130
  #torch_dtype=torch.bfloat16,
131
  add_watermarker=False,
132
  # custom_pipeline="lpw_stable_diffusion_xl",
 
135
  # vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
136
  # vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None, torch_dtype=torch.float32),
137
  # vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16",repo_type='model',safety_checker=None),
138
+ #vae=vae,
139
  #unet=pipeX.unet,
140
+ #scheduler = sched,
141
  # scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
142
  #scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
143
  )
 
144
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
145
  #pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
146
  #pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler', algorithm_type='sde-dpmsolver++')
147
+ pipe.vae = vaeX.to(torch.bfloat16)
148
  #pipe.unet = unetX
149
  #pipe.vae.do_resize=False
 
150
  #pipe.vae=vae.to(torch.bfloat16)
151
  #pipe.unet=pipeX.unet
152
  #pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
153
 
154
  pipe.to(device)
155
+
156
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
157
+
158
  pipe.to(torch.bfloat16)
159
 
160
  #apply_hidiffusion(pipe)
 
222
  f.write(f"Guidance Scale: {guidance_scale} \n")
223
  f.write(f"SPACE SETUP: \n")
224
  f.write(f"Use Model Dtype: no \n")
225
+ f.write(f"Model Scheduler: Euler_a custom after cuda \n")
226
  f.write(f"Model VAE: juggernaut to bfloat before cuda \n")
227
  f.write(f"Model UNET: default ford442/RealVisXL_V5.0_BF16 \n")
228
  f.write(f"Model HiDiffusion OFF \n")