Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -113,21 +113,20 @@ def load_and_prepare_model(model_id):
|
|
113 |
#vae = AutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2',use_safetensors=False)
|
114 |
#vae = AutoencoderKL.from_single_file('https://huggingface.co/ford442/sdxl-vae-bf16/mySLR/myslrVAE_v10.safetensors')
|
115 |
#vaeX = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
|
116 |
-
|
117 |
#vaeX = AutoencoderKL.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
118 |
#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
119 |
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
|
120 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
121 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
|
122 |
-
|
123 |
-
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
124 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
|
125 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
|
126 |
|
127 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
128 |
'ford442/RealVisXL_V5.0_BF16',
|
129 |
-
|
130 |
-
|
131 |
#torch_dtype=torch.bfloat16,
|
132 |
add_watermarker=False,
|
133 |
# custom_pipeline="lpw_stable_diffusion_xl",
|
@@ -136,25 +135,26 @@ def load_and_prepare_model(model_id):
|
|
136 |
# vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
|
137 |
# vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None, torch_dtype=torch.float32),
|
138 |
# vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16",repo_type='model',safety_checker=None),
|
139 |
-
vae=
|
140 |
#unet=pipeX.unet,
|
141 |
-
scheduler =
|
142 |
# scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
143 |
#scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
|
144 |
)
|
145 |
-
|
146 |
#sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
|
147 |
#pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
148 |
#pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler', algorithm_type='sde-dpmsolver++')
|
149 |
-
|
150 |
#pipe.unet = unetX
|
151 |
#pipe.vae.do_resize=False
|
152 |
-
#pipe.scheduler = sched
|
153 |
#pipe.vae=vae.to(torch.bfloat16)
|
154 |
#pipe.unet=pipeX.unet
|
155 |
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
156 |
|
157 |
pipe.to(device)
|
|
|
|
|
|
|
158 |
pipe.to(torch.bfloat16)
|
159 |
|
160 |
#apply_hidiffusion(pipe)
|
@@ -222,7 +222,7 @@ def uploadNote():
|
|
222 |
f.write(f"Guidance Scale: {guidance_scale} \n")
|
223 |
f.write(f"SPACE SETUP: \n")
|
224 |
f.write(f"Use Model Dtype: no \n")
|
225 |
-
f.write(f"Model Scheduler: Euler_a custom
|
226 |
f.write(f"Model VAE: juggernaut to bfloat before cuda \n")
|
227 |
f.write(f"Model UNET: default ford442/RealVisXL_V5.0_BF16 \n")
|
228 |
f.write(f"Model HiDiffusion OFF \n")
|
|
|
113 |
#vae = AutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2',use_safetensors=False)
|
114 |
#vae = AutoencoderKL.from_single_file('https://huggingface.co/ford442/sdxl-vae-bf16/mySLR/myslrVAE_v10.safetensors')
|
115 |
#vaeX = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
|
116 |
+
vaeX = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae') # ,use_safetensors=True FAILS
|
117 |
#vaeX = AutoencoderKL.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
118 |
#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
119 |
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
|
120 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
121 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
|
122 |
+
#sched = EulerAncestralDiscreteScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
|
|
|
123 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
|
124 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
|
125 |
|
126 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
127 |
'ford442/RealVisXL_V5.0_BF16',
|
128 |
+
#'ford442/Juggernaut-XI-v11-fp32',
|
129 |
+
# 'SG161222/RealVisXL_V5.0',
|
130 |
#torch_dtype=torch.bfloat16,
|
131 |
add_watermarker=False,
|
132 |
# custom_pipeline="lpw_stable_diffusion_xl",
|
|
|
135 |
# vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
|
136 |
# vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None, torch_dtype=torch.float32),
|
137 |
# vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16",repo_type='model',safety_checker=None),
|
138 |
+
#vae=vae,
|
139 |
#unet=pipeX.unet,
|
140 |
+
#scheduler = sched,
|
141 |
# scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
142 |
#scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
|
143 |
)
|
|
|
144 |
#sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
|
145 |
#pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
146 |
#pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler', algorithm_type='sde-dpmsolver++')
|
147 |
+
pipe.vae = vaeX.to(torch.bfloat16)
|
148 |
#pipe.unet = unetX
|
149 |
#pipe.vae.do_resize=False
|
|
|
150 |
#pipe.vae=vae.to(torch.bfloat16)
|
151 |
#pipe.unet=pipeX.unet
|
152 |
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
153 |
|
154 |
pipe.to(device)
|
155 |
+
|
156 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
157 |
+
|
158 |
pipe.to(torch.bfloat16)
|
159 |
|
160 |
#apply_hidiffusion(pipe)
|
|
|
222 |
f.write(f"Guidance Scale: {guidance_scale} \n")
|
223 |
f.write(f"SPACE SETUP: \n")
|
224 |
f.write(f"Use Model Dtype: no \n")
|
225 |
+
f.write(f"Model Scheduler: Euler_a custom after cuda \n")
|
226 |
f.write(f"Model VAE: juggernaut to bfloat before cuda \n")
|
227 |
f.write(f"Model UNET: default ford442/RealVisXL_V5.0_BF16 \n")
|
228 |
f.write(f"Model HiDiffusion OFF \n")
|