Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -256,22 +256,22 @@ def generate_60(
|
|
256 |
pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
|
257 |
pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
|
258 |
|
259 |
-
text_inputs1 = tokenizer(
|
260 |
prompt,
|
261 |
padding="max_length",
|
262 |
max_length=77,
|
263 |
truncation=True,
|
264 |
return_tensors="pt",
|
265 |
)
|
266 |
-
text_inputs2 = tokenizer(
|
267 |
prompt2,
|
268 |
padding="max_length",
|
269 |
max_length=77,
|
270 |
truncation=True,
|
271 |
return_tensors="pt",
|
272 |
)
|
273 |
-
prompt_embedsa = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
274 |
-
prompt_embedsb = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
275 |
prompt_embeds = torch.cat([prompt_embedsa,prompt_embedsb]).mean(dim=-1)
|
276 |
|
277 |
options = {
|
@@ -319,22 +319,22 @@ def generate_90(
|
|
319 |
pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
|
320 |
pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
|
321 |
|
322 |
-
text_inputs1 = tokenizer(
|
323 |
prompt,
|
324 |
padding="max_length",
|
325 |
max_length=77,
|
326 |
truncation=True,
|
327 |
return_tensors="pt",
|
328 |
)
|
329 |
-
text_inputs2 = tokenizer(
|
330 |
prompt2,
|
331 |
padding="max_length",
|
332 |
max_length=77,
|
333 |
truncation=True,
|
334 |
return_tensors="pt",
|
335 |
)
|
336 |
-
prompt_embedsa = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
337 |
-
prompt_embedsb = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
338 |
prompt_embeds = torch.cat([prompt_embedsa,prompt_embedsb]).mean(dim=-1)
|
339 |
|
340 |
options = {
|
|
|
256 |
pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
|
257 |
pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
|
258 |
|
259 |
+
text_inputs1 = pipe.tokenizer(
|
260 |
prompt,
|
261 |
padding="max_length",
|
262 |
max_length=77,
|
263 |
truncation=True,
|
264 |
return_tensors="pt",
|
265 |
)
|
266 |
+
text_inputs2 = pipe.tokenizer(
|
267 |
prompt2,
|
268 |
padding="max_length",
|
269 |
max_length=77,
|
270 |
truncation=True,
|
271 |
return_tensors="pt",
|
272 |
)
|
273 |
+
prompt_embedsa = pipe.text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
274 |
+
prompt_embedsb = pipe.text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
275 |
prompt_embeds = torch.cat([prompt_embedsa,prompt_embedsb]).mean(dim=-1)
|
276 |
|
277 |
options = {
|
|
|
319 |
pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
|
320 |
pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
|
321 |
|
322 |
+
text_inputs1 = pipe.tokenizer(
|
323 |
prompt,
|
324 |
padding="max_length",
|
325 |
max_length=77,
|
326 |
truncation=True,
|
327 |
return_tensors="pt",
|
328 |
)
|
329 |
+
text_inputs2 = pipe.tokenizer(
|
330 |
prompt2,
|
331 |
padding="max_length",
|
332 |
max_length=77,
|
333 |
truncation=True,
|
334 |
return_tensors="pt",
|
335 |
)
|
336 |
+
prompt_embedsa = pipe.text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
337 |
+
prompt_embedsb = pipe.text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
338 |
prompt_embeds = torch.cat([prompt_embedsa,prompt_embedsb]).mean(dim=-1)
|
339 |
|
340 |
options = {
|