ford442 commited on
Commit
b5d77fb
·
verified ·
1 Parent(s): 205d861

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -1
app.py CHANGED
@@ -85,7 +85,7 @@ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
85
 
86
  def load_and_prepare_model():
87
  #vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=True, token=True)
88
- vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
89
  #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
90
  #sched = DPMSolverSDEScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
91
  #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", token=True) #, beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True, token=True)
 
85
 
86
  def load_and_prepare_model():
87
  #vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=True, token=True)
88
+ vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False, low_cpu_mem_usage=False, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
89
  #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
90
  #sched = DPMSolverSDEScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
91
  #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", token=True) #, beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True, token=True)