Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -246,6 +246,7 @@ def generate_30(
|
|
246 |
|
247 |
prompt_embeds_a2 = pipe.text_encoder_2(text_input_ids1b.to(torch.device('cuda')), output_hidden_states=True)
|
248 |
pooled_prompt_embeds_a2 = prompt_embeds_a2[0] # Pooled output from encoder 1
|
|
|
249 |
prompt_embeds_a2 = prompt_embeds_a2.hidden_states[-2] # Penultimate hidden state from encoder 1
|
250 |
print('encoder shape2: ', prompt_embeds_a2.shape)
|
251 |
prompt_embeds_b2 = pipe.text_encoder_2(text_input_ids2b.to(torch.device('cuda')), output_hidden_states=True)
|
@@ -256,15 +257,17 @@ def generate_30(
|
|
256 |
prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
|
257 |
print('catted shape: ', prompt_embeds.shape)
|
258 |
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds_a, pooled_prompt_embeds_b])
|
259 |
-
print('pooled shape: ', prompt_embeds.shape)
|
260 |
|
261 |
# 4. (Optional) Average the pooled embeddings
|
262 |
prompt_embeds = torch.mean(prompt_embeds,dim=0,keepdim=True)
|
263 |
print('averaged shape: ', prompt_embeds.shape)
|
264 |
|
265 |
# 3. Concatenate the text_encoder_2 embeddings
|
|
|
|
|
266 |
pooled_prompt_embeds2 = torch.cat([pooled_prompt_embeds_a2, pooled_prompt_embeds_b2])
|
267 |
-
print('catted pooled shape: ', prompt_embeds.shape)
|
268 |
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, pooled_prompt_embeds2])
|
269 |
print('catted combined pooled shape: ', prompt_embeds.shape)
|
270 |
# 4. (Optional) Average the pooled embeddings
|
@@ -370,26 +373,28 @@ def generate_60(
|
|
370 |
|
371 |
prompt_embeds_a2 = pipe.text_encoder_2(text_input_ids1b.to(torch.device('cuda')), output_hidden_states=True)
|
372 |
pooled_prompt_embeds_a2 = prompt_embeds_a2[0] # Pooled output from encoder 1
|
|
|
373 |
prompt_embeds_a2 = prompt_embeds_a2.hidden_states[-2] # Penultimate hidden state from encoder 1
|
374 |
-
print('encoder
|
375 |
prompt_embeds_b2 = pipe.text_encoder_2(text_input_ids2b.to(torch.device('cuda')), output_hidden_states=True)
|
376 |
pooled_prompt_embeds_b2 = prompt_embeds_b2[0] # Pooled output from encoder 2
|
377 |
prompt_embeds_b2 = prompt_embeds_b2.hidden_states[-2] # Penultimate hidden state from encoder 2
|
378 |
|
379 |
-
|
380 |
# 3. Concatenate the embeddings
|
381 |
prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
|
382 |
print('catted shape: ', prompt_embeds.shape)
|
383 |
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds_a, pooled_prompt_embeds_b])
|
384 |
-
print('pooled shape: ', prompt_embeds.shape)
|
385 |
|
386 |
# 4. (Optional) Average the pooled embeddings
|
387 |
prompt_embeds = torch.mean(prompt_embeds,dim=0,keepdim=True)
|
388 |
print('averaged shape: ', prompt_embeds.shape)
|
389 |
|
390 |
# 3. Concatenate the text_encoder_2 embeddings
|
|
|
|
|
391 |
pooled_prompt_embeds2 = torch.cat([pooled_prompt_embeds_a2, pooled_prompt_embeds_b2])
|
392 |
-
print('catted pooled shape: ', prompt_embeds.shape)
|
393 |
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, pooled_prompt_embeds2])
|
394 |
print('catted combined pooled shape: ', prompt_embeds.shape)
|
395 |
# 4. (Optional) Average the pooled embeddings
|
@@ -495,26 +500,28 @@ def generate_90(
|
|
495 |
|
496 |
prompt_embeds_a2 = pipe.text_encoder_2(text_input_ids1b.to(torch.device('cuda')), output_hidden_states=True)
|
497 |
pooled_prompt_embeds_a2 = prompt_embeds_a2[0] # Pooled output from encoder 1
|
|
|
498 |
prompt_embeds_a2 = prompt_embeds_a2.hidden_states[-2] # Penultimate hidden state from encoder 1
|
499 |
-
print('encoder
|
500 |
prompt_embeds_b2 = pipe.text_encoder_2(text_input_ids2b.to(torch.device('cuda')), output_hidden_states=True)
|
501 |
pooled_prompt_embeds_b2 = prompt_embeds_b2[0] # Pooled output from encoder 2
|
502 |
prompt_embeds_b2 = prompt_embeds_b2.hidden_states[-2] # Penultimate hidden state from encoder 2
|
503 |
|
504 |
-
|
505 |
# 3. Concatenate the embeddings
|
506 |
prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
|
507 |
print('catted shape: ', prompt_embeds.shape)
|
508 |
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds_a, pooled_prompt_embeds_b])
|
509 |
-
print('pooled shape: ', prompt_embeds.shape)
|
510 |
|
511 |
# 4. (Optional) Average the pooled embeddings
|
512 |
prompt_embeds = torch.mean(prompt_embeds,dim=0,keepdim=True)
|
513 |
print('averaged shape: ', prompt_embeds.shape)
|
514 |
|
515 |
# 3. Concatenate the text_encoder_2 embeddings
|
|
|
|
|
516 |
pooled_prompt_embeds2 = torch.cat([pooled_prompt_embeds_a2, pooled_prompt_embeds_b2])
|
517 |
-
print('catted pooled shape: ', prompt_embeds.shape)
|
518 |
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, pooled_prompt_embeds2])
|
519 |
print('catted combined pooled shape: ', prompt_embeds.shape)
|
520 |
# 4. (Optional) Average the pooled embeddings
|
|
|
246 |
|
247 |
prompt_embeds_a2 = pipe.text_encoder_2(text_input_ids1b.to(torch.device('cuda')), output_hidden_states=True)
|
248 |
pooled_prompt_embeds_a2 = prompt_embeds_a2[0] # Pooled output from encoder 1
|
249 |
+
print('pooled shape: ', pooled_prompt_embeds_a2.shape)
|
250 |
prompt_embeds_a2 = prompt_embeds_a2.hidden_states[-2] # Penultimate hidden state from encoder 1
|
251 |
print('encoder shape2: ', prompt_embeds_a2.shape)
|
252 |
prompt_embeds_b2 = pipe.text_encoder_2(text_input_ids2b.to(torch.device('cuda')), output_hidden_states=True)
|
|
|
257 |
prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
|
258 |
print('catted shape: ', prompt_embeds.shape)
|
259 |
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds_a, pooled_prompt_embeds_b])
|
260 |
+
print('catted pooled shape: ', prompt_embeds.shape)
|
261 |
|
262 |
# 4. (Optional) Average the pooled embeddings
|
263 |
prompt_embeds = torch.mean(prompt_embeds,dim=0,keepdim=True)
|
264 |
print('averaged shape: ', prompt_embeds.shape)
|
265 |
|
266 |
# 3. Concatenate the text_encoder_2 embeddings
|
267 |
+
prompt_embeds2 = torch.cat([prompt_embeds_a, prompt_embeds_b])
|
268 |
+
print('catted shape2: ', prompt_embeds2.shape)
|
269 |
pooled_prompt_embeds2 = torch.cat([pooled_prompt_embeds_a2, pooled_prompt_embeds_b2])
|
270 |
+
print('catted pooled shape 2: ', prompt_embeds.shape)
|
271 |
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, pooled_prompt_embeds2])
|
272 |
print('catted combined pooled shape: ', prompt_embeds.shape)
|
273 |
# 4. (Optional) Average the pooled embeddings
|
|
|
373 |
|
374 |
prompt_embeds_a2 = pipe.text_encoder_2(text_input_ids1b.to(torch.device('cuda')), output_hidden_states=True)
|
375 |
pooled_prompt_embeds_a2 = prompt_embeds_a2[0] # Pooled output from encoder 1
|
376 |
+
print('pooled shape: ', pooled_prompt_embeds_a2.shape)
|
377 |
prompt_embeds_a2 = prompt_embeds_a2.hidden_states[-2] # Penultimate hidden state from encoder 1
|
378 |
+
print('encoder shape2: ', prompt_embeds_a2.shape)
|
379 |
prompt_embeds_b2 = pipe.text_encoder_2(text_input_ids2b.to(torch.device('cuda')), output_hidden_states=True)
|
380 |
pooled_prompt_embeds_b2 = prompt_embeds_b2[0] # Pooled output from encoder 2
|
381 |
prompt_embeds_b2 = prompt_embeds_b2.hidden_states[-2] # Penultimate hidden state from encoder 2
|
382 |
|
|
|
383 |
# 3. Concatenate the embeddings
|
384 |
prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
|
385 |
print('catted shape: ', prompt_embeds.shape)
|
386 |
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds_a, pooled_prompt_embeds_b])
|
387 |
+
print('catted pooled shape: ', prompt_embeds.shape)
|
388 |
|
389 |
# 4. (Optional) Average the pooled embeddings
|
390 |
prompt_embeds = torch.mean(prompt_embeds,dim=0,keepdim=True)
|
391 |
print('averaged shape: ', prompt_embeds.shape)
|
392 |
|
393 |
# 3. Concatenate the text_encoder_2 embeddings
|
394 |
+
prompt_embeds2 = torch.cat([prompt_embeds_a, prompt_embeds_b])
|
395 |
+
print('catted shape2: ', prompt_embeds2.shape)
|
396 |
pooled_prompt_embeds2 = torch.cat([pooled_prompt_embeds_a2, pooled_prompt_embeds_b2])
|
397 |
+
print('catted pooled shape 2: ', prompt_embeds.shape)
|
398 |
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, pooled_prompt_embeds2])
|
399 |
print('catted combined pooled shape: ', prompt_embeds.shape)
|
400 |
# 4. (Optional) Average the pooled embeddings
|
|
|
500 |
|
501 |
prompt_embeds_a2 = pipe.text_encoder_2(text_input_ids1b.to(torch.device('cuda')), output_hidden_states=True)
|
502 |
pooled_prompt_embeds_a2 = prompt_embeds_a2[0] # Pooled output from encoder 1
|
503 |
+
print('pooled shape: ', pooled_prompt_embeds_a2.shape)
|
504 |
prompt_embeds_a2 = prompt_embeds_a2.hidden_states[-2] # Penultimate hidden state from encoder 1
|
505 |
+
print('encoder shape2: ', prompt_embeds_a2.shape)
|
506 |
prompt_embeds_b2 = pipe.text_encoder_2(text_input_ids2b.to(torch.device('cuda')), output_hidden_states=True)
|
507 |
pooled_prompt_embeds_b2 = prompt_embeds_b2[0] # Pooled output from encoder 2
|
508 |
prompt_embeds_b2 = prompt_embeds_b2.hidden_states[-2] # Penultimate hidden state from encoder 2
|
509 |
|
|
|
510 |
# 3. Concatenate the embeddings
|
511 |
prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
|
512 |
print('catted shape: ', prompt_embeds.shape)
|
513 |
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds_a, pooled_prompt_embeds_b])
|
514 |
+
print('catted pooled shape: ', prompt_embeds.shape)
|
515 |
|
516 |
# 4. (Optional) Average the pooled embeddings
|
517 |
prompt_embeds = torch.mean(prompt_embeds,dim=0,keepdim=True)
|
518 |
print('averaged shape: ', prompt_embeds.shape)
|
519 |
|
520 |
# 3. Concatenate the text_encoder_2 embeddings
|
521 |
+
prompt_embeds2 = torch.cat([prompt_embeds_a, prompt_embeds_b])
|
522 |
+
print('catted shape2: ', prompt_embeds2.shape)
|
523 |
pooled_prompt_embeds2 = torch.cat([pooled_prompt_embeds_a2, pooled_prompt_embeds_b2])
|
524 |
+
print('catted pooled shape 2: ', prompt_embeds.shape)
|
525 |
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, pooled_prompt_embeds2])
|
526 |
print('catted combined pooled shape: ', prompt_embeds.shape)
|
527 |
# 4. (Optional) Average the pooled embeddings
|