Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -104,7 +104,6 @@ def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str
|
|
| 104 |
if not negative:
|
| 105 |
negative = ""
|
| 106 |
return p.replace("{prompt}", positive), n + negative
|
| 107 |
-
|
| 108 |
def load_and_prepare_model(model_id):
|
| 109 |
model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
|
| 110 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
|
@@ -113,13 +112,14 @@ def load_and_prepare_model(model_id):
|
|
| 113 |
#vae = AutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2',use_safetensors=False)
|
| 114 |
#vae = AutoencoderKL.from_single_file('https://huggingface.co/ford442/sdxl-vae-bf16/mySLR/myslrVAE_v10.safetensors')
|
| 115 |
#vaeX = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
|
| 116 |
-
vaeX = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae')
|
| 117 |
#vaeX = AutoencoderKL.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
| 118 |
#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
| 119 |
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
|
| 120 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
| 121 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
|
| 122 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
|
|
|
|
| 123 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
|
| 124 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
|
| 125 |
|
|
@@ -141,23 +141,22 @@ def load_and_prepare_model(model_id):
|
|
| 141 |
# scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 142 |
#scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
|
| 143 |
)
|
|
|
|
| 144 |
#sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
|
| 145 |
#pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 146 |
#pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler', algorithm_type='sde-dpmsolver++')
|
| 147 |
-
pipe.vae = vaeX
|
| 148 |
#pipe.unet = unetX
|
| 149 |
#pipe.vae.do_resize=False
|
|
|
|
| 150 |
#pipe.vae=vae.to(torch.bfloat16)
|
| 151 |
#pipe.unet=pipeX.unet
|
| 152 |
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 153 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
| 154 |
|
| 155 |
pipe.to(device)
|
| 156 |
-
|
| 157 |
-
|
| 158 |
pipe.to(torch.bfloat16)
|
| 159 |
|
| 160 |
-
|
| 161 |
|
| 162 |
#pipe.unet.set_default_attn_processor()
|
| 163 |
#pipe.vae.set_default_attn_processor()
|
|
@@ -179,7 +178,7 @@ def load_and_prepare_model(model_id):
|
|
| 179 |
#sched = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, beta_schedule="linear", algorithm_type="dpmsolver++")
|
| 180 |
#sched = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 181 |
return pipe
|
| 182 |
-
|
| 183 |
# Preload and compile both models
|
| 184 |
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
|
| 185 |
|
|
@@ -223,9 +222,9 @@ def uploadNote():
|
|
| 223 |
f.write(f"SPACE SETUP: \n")
|
| 224 |
f.write(f"Use Model Dtype: no \n")
|
| 225 |
f.write(f"Model Scheduler: Euler_a custom after cuda \n")
|
| 226 |
-
f.write(f"Model VAE: juggernaut to bfloat before cuda \n")
|
| 227 |
f.write(f"Model UNET: default ford442/RealVisXL_V5.0_BF16 \n")
|
| 228 |
-
f.write(f"Model HiDiffusion
|
| 229 |
f.write(f"Now added pip 24 \n")
|
| 230 |
upload_to_ftp(filename)
|
| 231 |
|
|
|
|
| 104 |
if not negative:
|
| 105 |
negative = ""
|
| 106 |
return p.replace("{prompt}", positive), n + negative
|
|
|
|
| 107 |
def load_and_prepare_model(model_id):
|
| 108 |
model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
|
| 109 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
|
|
|
| 112 |
#vae = AutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2',use_safetensors=False)
|
| 113 |
#vae = AutoencoderKL.from_single_file('https://huggingface.co/ford442/sdxl-vae-bf16/mySLR/myslrVAE_v10.safetensors')
|
| 114 |
#vaeX = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
|
| 115 |
+
vaeX = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
| 116 |
#vaeX = AutoencoderKL.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
| 117 |
#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
| 118 |
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
|
| 119 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
| 120 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
|
| 121 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
|
| 122 |
+
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
| 123 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
|
| 124 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
|
| 125 |
|
|
|
|
| 141 |
# scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 142 |
#scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
|
| 143 |
)
|
| 144 |
+
|
| 145 |
#sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
|
| 146 |
#pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 147 |
#pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler', algorithm_type='sde-dpmsolver++')
|
| 148 |
+
pipe.vae = vaeX
|
| 149 |
#pipe.unet = unetX
|
| 150 |
#pipe.vae.do_resize=False
|
| 151 |
+
pipe.scheduler = sched
|
| 152 |
#pipe.vae=vae.to(torch.bfloat16)
|
| 153 |
#pipe.unet=pipeX.unet
|
| 154 |
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
|
|
|
| 155 |
|
| 156 |
pipe.to(device)
|
|
|
|
|
|
|
| 157 |
pipe.to(torch.bfloat16)
|
| 158 |
|
| 159 |
+
apply_hidiffusion(pipe)
|
| 160 |
|
| 161 |
#pipe.unet.set_default_attn_processor()
|
| 162 |
#pipe.vae.set_default_attn_processor()
|
|
|
|
| 178 |
#sched = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, beta_schedule="linear", algorithm_type="dpmsolver++")
|
| 179 |
#sched = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 180 |
return pipe
|
| 181 |
+
|
| 182 |
# Preload and compile both models
|
| 183 |
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
|
| 184 |
|
|
|
|
| 222 |
f.write(f"SPACE SETUP: \n")
|
| 223 |
f.write(f"Use Model Dtype: no \n")
|
| 224 |
f.write(f"Model Scheduler: Euler_a custom after cuda \n")
|
| 225 |
+
f.write(f"Model VAE: juggernaut to bfloat before cuda then attn_proc \n")
|
| 226 |
f.write(f"Model UNET: default ford442/RealVisXL_V5.0_BF16 \n")
|
| 227 |
+
f.write(f"Model HiDiffusion ON \n")
|
| 228 |
f.write(f"Now added pip 24 \n")
|
| 229 |
upload_to_ftp(filename)
|
| 230 |
|