Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -27,6 +27,7 @@ import time
|
|
27 |
import datetime
|
28 |
from gradio import themes
|
29 |
from image_gen_aux import UpscaleWithModel
|
|
|
30 |
|
31 |
torch.backends.cuda.matmul.allow_tf32 = False
|
32 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
@@ -115,7 +116,6 @@ def load_and_prepare_model():
|
|
115 |
#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
116 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
117 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
|
118 |
-
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16',token=HF_TOKEN, subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1) #,use_karras_sigmas=True)
|
119 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16',token=HF_TOKEN, subfolder='scheduler',beta_schedule="scaled_linear")
|
120 |
#sched = DPMSolverSDEScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
|
121 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
|
@@ -141,6 +141,7 @@ def load_and_prepare_model():
|
|
141 |
# scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
142 |
#scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
|
143 |
)
|
|
|
144 |
#pipe.vae = AsymmetricAutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
145 |
|
146 |
#pipe.vae = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae') # ,use_safetensors=True FAILS
|
@@ -182,7 +183,7 @@ def load_and_prepare_model():
|
|
182 |
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
183 |
# pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/Fantasy_World_XL.safetensors", adapter_name="fantasy")
|
184 |
|
185 |
-
pipe.vae.set_default_attn_processor()
|
186 |
|
187 |
#pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/skin_texture_style_v4.safetensors", adapter_name="skin")
|
188 |
#pipe.unet.load_lora_adapter("ford442/sdxl-vae-bf16", weight_name="LoRA/skin_texture_style_v4.safetensors", prefix="unet")
|
|
|
27 |
import datetime
|
28 |
from gradio import themes
|
29 |
from image_gen_aux import UpscaleWithModel
|
30 |
+
from diffusers.models.attention_processor import AttnProcessor2_0
|
31 |
|
32 |
torch.backends.cuda.matmul.allow_tf32 = False
|
33 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
|
|
116 |
#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
117 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
118 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
|
|
|
119 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16',token=HF_TOKEN, subfolder='scheduler',beta_schedule="scaled_linear")
|
120 |
#sched = DPMSolverSDEScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
|
121 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
|
|
|
141 |
# scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
142 |
#scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
|
143 |
)
|
144 |
+
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16',token=HF_TOKEN, subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1) #,use_karras_sigmas=True)
|
145 |
#pipe.vae = AsymmetricAutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
146 |
|
147 |
#pipe.vae = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae') # ,use_safetensors=True FAILS
|
|
|
183 |
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
184 |
# pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/Fantasy_World_XL.safetensors", adapter_name="fantasy")
|
185 |
|
186 |
+
pipe.vae.set_default_attn_processor(AttnProcessor2_0()) # Set attention processor first
|
187 |
|
188 |
#pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/skin_texture_style_v4.safetensors", adapter_name="skin")
|
189 |
#pipe.unet.load_lora_adapter("ford442/sdxl-vae-bf16", weight_name="LoRA/skin_texture_style_v4.safetensors", prefix="unet")
|