ford442 commited on
Commit
cf0fe80
Β·
1 Parent(s): ad97103

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -106,16 +106,16 @@ def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str
106
  def load_and_prepare_model(model_id):
107
  model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
108
  dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
109
- #vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16,use_safetensors=True,safety_checker=None)
110
- vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",safety_checker=None)
111
  # vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
112
  # vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None).to('cuda')
113
- pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0")
114
  pipe = StableDiffusionXLPipeline.from_pretrained(
115
  model_id,
116
- # torch_dtype=torch.bfloat16,
117
- # add_watermarker=False,
118
- # use_safetensors=True,
119
  # vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
120
  # vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None, torch_dtype=torch.float32),
121
  # vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16",repo_type='model',safety_checker=None),
@@ -132,9 +132,9 @@ def load_and_prepare_model(model_id):
132
  pipe.unet = pipeX.unet
133
  pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
134
  pipe.to(device)
135
- #pipe.unet.to(torch.bfloat16)
136
- #pipe.vae.to(torch.bfloat16)
137
- pipe.to(torch.bfloat16)
138
  #pipe.to(device, torch.bfloat16)
139
  del pipeX
140
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", algorithm_type="dpmsolver++")
 
106
  def load_and_prepare_model(model_id):
107
  model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
108
  dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
109
+ vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16,use_safetensors=True,safety_checker=None)
110
+ #vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",safety_checker=None)
111
  # vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
112
  # vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None).to('cuda')
113
+ pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0",torch_dtype=torch.float32)
114
  pipe = StableDiffusionXLPipeline.from_pretrained(
115
  model_id,
116
+ torch_dtype=torch.bfloat16,
117
+ add_watermarker=False,
118
+ use_safetensors=True,
119
  # vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
120
  # vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None, torch_dtype=torch.float32),
121
  # vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16",repo_type='model',safety_checker=None),
 
132
  pipe.unet = pipeX.unet
133
  pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
134
  pipe.to(device)
135
+ pipe.unet.to(torch.bfloat16)
136
+ pipe.vae.to(torch.bfloat16)
137
+ #pipe.to(torch.bfloat16)
138
  #pipe.to(device, torch.bfloat16)
139
  del pipeX
140
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", algorithm_type="dpmsolver++")