Create free_lunch_utils.py
Browse files- free_lunch_utils.py +340 -0
free_lunch_utils.py
ADDED
|
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.fft as fft
|
| 3 |
+
from diffusers.models.unet_2d_condition import logger
|
| 4 |
+
from diffusers.utils import is_torch_version
|
| 5 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def isinstance_str(x: object, cls_name: str):
|
| 9 |
+
"""
|
| 10 |
+
Checks whether x has any class *named* cls_name in its ancestry.
|
| 11 |
+
Doesn't require access to the class's implementation.
|
| 12 |
+
|
| 13 |
+
Useful for patching!
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
for _cls in x.__class__.__mro__:
|
| 17 |
+
if _cls.__name__ == cls_name:
|
| 18 |
+
return True
|
| 19 |
+
|
| 20 |
+
return False
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def Fourier_filter(x, threshold, scale):
|
| 24 |
+
dtype = x.dtype
|
| 25 |
+
x = x.type(torch.float32)
|
| 26 |
+
# FFT
|
| 27 |
+
x_freq = fft.fftn(x, dim=(-2, -1))
|
| 28 |
+
x_freq = fft.fftshift(x_freq, dim=(-2, -1))
|
| 29 |
+
|
| 30 |
+
B, C, H, W = x_freq.shape
|
| 31 |
+
mask = torch.ones((B, C, H, W)).cuda()
|
| 32 |
+
|
| 33 |
+
crow, ccol = H // 2, W //2
|
| 34 |
+
mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale
|
| 35 |
+
x_freq = x_freq * mask
|
| 36 |
+
|
| 37 |
+
# IFFT
|
| 38 |
+
x_freq = fft.ifftshift(x_freq, dim=(-2, -1))
|
| 39 |
+
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real
|
| 40 |
+
|
| 41 |
+
x_filtered = x_filtered.type(dtype)
|
| 42 |
+
return x_filtered
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def register_upblock2d(model):
|
| 46 |
+
def up_forward(self):
|
| 47 |
+
def forward(hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
| 48 |
+
for resnet in self.resnets:
|
| 49 |
+
# pop res hidden states
|
| 50 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 51 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 52 |
+
#print(f"in upblock2d, hidden states shape: {hidden_states.shape}")
|
| 53 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 54 |
+
|
| 55 |
+
if self.training and self.gradient_checkpointing:
|
| 56 |
+
|
| 57 |
+
def create_custom_forward(module):
|
| 58 |
+
def custom_forward(*inputs):
|
| 59 |
+
return module(*inputs)
|
| 60 |
+
|
| 61 |
+
return custom_forward
|
| 62 |
+
|
| 63 |
+
if is_torch_version(">=", "1.11.0"):
|
| 64 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 65 |
+
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
| 66 |
+
)
|
| 67 |
+
else:
|
| 68 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 69 |
+
create_custom_forward(resnet), hidden_states, temb
|
| 70 |
+
)
|
| 71 |
+
else:
|
| 72 |
+
hidden_states = resnet(hidden_states, temb)
|
| 73 |
+
|
| 74 |
+
if self.upsamplers is not None:
|
| 75 |
+
for upsampler in self.upsamplers:
|
| 76 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 77 |
+
|
| 78 |
+
return hidden_states
|
| 79 |
+
|
| 80 |
+
return forward
|
| 81 |
+
|
| 82 |
+
for i, upsample_block in enumerate(model.unet.up_blocks):
|
| 83 |
+
if isinstance_str(upsample_block, "UpBlock2D"):
|
| 84 |
+
upsample_block.forward = up_forward(upsample_block)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def register_free_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
|
| 88 |
+
def up_forward(self):
|
| 89 |
+
def forward(hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
| 90 |
+
for resnet in self.resnets:
|
| 91 |
+
# pop res hidden states
|
| 92 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 93 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 94 |
+
#print(f"in free upblock2d, hidden states shape: {hidden_states.shape}")
|
| 95 |
+
|
| 96 |
+
# # --------------- FreeU code -----------------------
|
| 97 |
+
# # Only operate on the first two stages
|
| 98 |
+
# if hidden_states.shape[1] == 1280:
|
| 99 |
+
# hidden_states[:,:640] = hidden_states[:,:640] * self.b1
|
| 100 |
+
# res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1)
|
| 101 |
+
# if hidden_states.shape[1] == 640:
|
| 102 |
+
# hidden_states[:,:320] = hidden_states[:,:320] * self.b2
|
| 103 |
+
# res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2)
|
| 104 |
+
# # ---------------------------------------------------------
|
| 105 |
+
|
| 106 |
+
# --------------- FreeU code -----------------------
|
| 107 |
+
# Only operate on the first two stages
|
| 108 |
+
if hidden_states.shape[1] == 1280:
|
| 109 |
+
hidden_mean = hidden_states.mean(1).unsqueeze(1)
|
| 110 |
+
B = hidden_mean.shape[0]
|
| 111 |
+
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
| 112 |
+
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
| 113 |
+
|
| 114 |
+
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)
|
| 115 |
+
|
| 116 |
+
hidden_states[:,:640] = hidden_states[:,:640] * ((self.b1 - 1 ) * hidden_mean + 1)
|
| 117 |
+
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1)
|
| 118 |
+
if hidden_states.shape[1] == 640:
|
| 119 |
+
hidden_mean = hidden_states.mean(1).unsqueeze(1)
|
| 120 |
+
B = hidden_mean.shape[0]
|
| 121 |
+
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
| 122 |
+
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
| 123 |
+
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)
|
| 124 |
+
|
| 125 |
+
hidden_states[:,:320] = hidden_states[:,:320] * ((self.b2 - 1 ) * hidden_mean + 1)
|
| 126 |
+
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2)
|
| 127 |
+
# ---------------------------------------------------------
|
| 128 |
+
|
| 129 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 130 |
+
|
| 131 |
+
if self.training and self.gradient_checkpointing:
|
| 132 |
+
|
| 133 |
+
def create_custom_forward(module):
|
| 134 |
+
def custom_forward(*inputs):
|
| 135 |
+
return module(*inputs)
|
| 136 |
+
|
| 137 |
+
return custom_forward
|
| 138 |
+
|
| 139 |
+
if is_torch_version(">=", "1.11.0"):
|
| 140 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 141 |
+
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
| 142 |
+
)
|
| 143 |
+
else:
|
| 144 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 145 |
+
create_custom_forward(resnet), hidden_states, temb
|
| 146 |
+
)
|
| 147 |
+
else:
|
| 148 |
+
hidden_states = resnet(hidden_states, temb)
|
| 149 |
+
|
| 150 |
+
if self.upsamplers is not None:
|
| 151 |
+
for upsampler in self.upsamplers:
|
| 152 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 153 |
+
|
| 154 |
+
return hidden_states
|
| 155 |
+
|
| 156 |
+
return forward
|
| 157 |
+
|
| 158 |
+
for i, upsample_block in enumerate(model.unet.up_blocks):
|
| 159 |
+
if isinstance_str(upsample_block, "UpBlock2D"):
|
| 160 |
+
upsample_block.forward = up_forward(upsample_block)
|
| 161 |
+
setattr(upsample_block, 'b1', b1)
|
| 162 |
+
setattr(upsample_block, 'b2', b2)
|
| 163 |
+
setattr(upsample_block, 's1', s1)
|
| 164 |
+
setattr(upsample_block, 's2', s2)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def register_crossattn_upblock2d(model):
|
| 168 |
+
def up_forward(self):
|
| 169 |
+
def forward(
|
| 170 |
+
hidden_states: torch.FloatTensor,
|
| 171 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
| 172 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 173 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 174 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 175 |
+
upsample_size: Optional[int] = None,
|
| 176 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 177 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 178 |
+
):
|
| 179 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
| 180 |
+
# pop res hidden states
|
| 181 |
+
#print(f"in crossatten upblock2d, hidden states shape: {hidden_states.shape}")
|
| 182 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 183 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 184 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 185 |
+
|
| 186 |
+
if self.training and self.gradient_checkpointing:
|
| 187 |
+
|
| 188 |
+
def create_custom_forward(module, return_dict=None):
|
| 189 |
+
def custom_forward(*inputs):
|
| 190 |
+
if return_dict is not None:
|
| 191 |
+
return module(*inputs, return_dict=return_dict)
|
| 192 |
+
else:
|
| 193 |
+
return module(*inputs)
|
| 194 |
+
|
| 195 |
+
return custom_forward
|
| 196 |
+
|
| 197 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 198 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 199 |
+
create_custom_forward(resnet),
|
| 200 |
+
hidden_states,
|
| 201 |
+
temb,
|
| 202 |
+
**ckpt_kwargs,
|
| 203 |
+
)
|
| 204 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 205 |
+
create_custom_forward(attn, return_dict=False),
|
| 206 |
+
hidden_states,
|
| 207 |
+
encoder_hidden_states,
|
| 208 |
+
None, # timestep
|
| 209 |
+
None, # class_labels
|
| 210 |
+
cross_attention_kwargs,
|
| 211 |
+
attention_mask,
|
| 212 |
+
encoder_attention_mask,
|
| 213 |
+
**ckpt_kwargs,
|
| 214 |
+
)[0]
|
| 215 |
+
else:
|
| 216 |
+
hidden_states = resnet(hidden_states, temb)
|
| 217 |
+
hidden_states = attn(
|
| 218 |
+
hidden_states,
|
| 219 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 220 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 221 |
+
attention_mask=attention_mask,
|
| 222 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 223 |
+
return_dict=False,
|
| 224 |
+
)[0]
|
| 225 |
+
|
| 226 |
+
if self.upsamplers is not None:
|
| 227 |
+
for upsampler in self.upsamplers:
|
| 228 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 229 |
+
|
| 230 |
+
return hidden_states
|
| 231 |
+
|
| 232 |
+
return forward
|
| 233 |
+
|
| 234 |
+
for i, upsample_block in enumerate(model.unet.up_blocks):
|
| 235 |
+
if isinstance_str(upsample_block, "CrossAttnUpBlock2D"):
|
| 236 |
+
upsample_block.forward = up_forward(upsample_block)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def register_free_crossattn_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
|
| 240 |
+
def up_forward(self):
|
| 241 |
+
def forward(
|
| 242 |
+
hidden_states: torch.FloatTensor,
|
| 243 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
| 244 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 245 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 246 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 247 |
+
upsample_size: Optional[int] = None,
|
| 248 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 249 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 250 |
+
):
|
| 251 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
| 252 |
+
# pop res hidden states
|
| 253 |
+
#print(f"in free crossatten upblock2d, hidden states shape: {hidden_states.shape}")
|
| 254 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 255 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 256 |
+
|
| 257 |
+
# --------------- FreeU code -----------------------
|
| 258 |
+
# Only operate on the first two stages
|
| 259 |
+
if hidden_states.shape[1] == 1280:
|
| 260 |
+
hidden_mean = hidden_states.mean(1).unsqueeze(1)
|
| 261 |
+
B = hidden_mean.shape[0]
|
| 262 |
+
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
| 263 |
+
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
| 264 |
+
|
| 265 |
+
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)
|
| 266 |
+
|
| 267 |
+
hidden_states[:,:640] = hidden_states[:,:640] * ((self.b1 - 1 ) * hidden_mean + 1)
|
| 268 |
+
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1)
|
| 269 |
+
if hidden_states.shape[1] == 640:
|
| 270 |
+
hidden_mean = hidden_states.mean(1).unsqueeze(1)
|
| 271 |
+
B = hidden_mean.shape[0]
|
| 272 |
+
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
| 273 |
+
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
| 274 |
+
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)
|
| 275 |
+
|
| 276 |
+
hidden_states[:,:320] = hidden_states[:,:320] * ((self.b2 - 1 ) * hidden_mean + 1)
|
| 277 |
+
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2)
|
| 278 |
+
# ---------------------------------------------------------
|
| 279 |
+
|
| 280 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 281 |
+
|
| 282 |
+
if self.training and self.gradient_checkpointing:
|
| 283 |
+
|
| 284 |
+
def create_custom_forward(module, return_dict=None):
|
| 285 |
+
def custom_forward(*inputs):
|
| 286 |
+
if return_dict is not None:
|
| 287 |
+
return module(*inputs, return_dict=return_dict)
|
| 288 |
+
else:
|
| 289 |
+
return module(*inputs)
|
| 290 |
+
|
| 291 |
+
return custom_forward
|
| 292 |
+
|
| 293 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 294 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 295 |
+
create_custom_forward(resnet),
|
| 296 |
+
hidden_states,
|
| 297 |
+
temb,
|
| 298 |
+
**ckpt_kwargs,
|
| 299 |
+
)
|
| 300 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 301 |
+
create_custom_forward(attn, return_dict=False),
|
| 302 |
+
hidden_states,
|
| 303 |
+
encoder_hidden_states,
|
| 304 |
+
None, # timestep
|
| 305 |
+
None, # class_labels
|
| 306 |
+
cross_attention_kwargs,
|
| 307 |
+
attention_mask,
|
| 308 |
+
encoder_attention_mask,
|
| 309 |
+
**ckpt_kwargs,
|
| 310 |
+
)[0]
|
| 311 |
+
else:
|
| 312 |
+
hidden_states = resnet(hidden_states, temb)
|
| 313 |
+
# hidden_states = attn(
|
| 314 |
+
# hidden_states,
|
| 315 |
+
# encoder_hidden_states=encoder_hidden_states,
|
| 316 |
+
# cross_attention_kwargs=cross_attention_kwargs,
|
| 317 |
+
# encoder_attention_mask=encoder_attention_mask,
|
| 318 |
+
# return_dict=False,
|
| 319 |
+
# )[0]
|
| 320 |
+
hidden_states = attn(
|
| 321 |
+
hidden_states,
|
| 322 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 323 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 324 |
+
)[0]
|
| 325 |
+
|
| 326 |
+
if self.upsamplers is not None:
|
| 327 |
+
for upsampler in self.upsamplers:
|
| 328 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 329 |
+
|
| 330 |
+
return hidden_states
|
| 331 |
+
|
| 332 |
+
return forward
|
| 333 |
+
|
| 334 |
+
for i, upsample_block in enumerate(model.unet.up_blocks):
|
| 335 |
+
if isinstance_str(upsample_block, "CrossAttnUpBlock2D"):
|
| 336 |
+
upsample_block.forward = up_forward(upsample_block)
|
| 337 |
+
setattr(upsample_block, 'b1', b1)
|
| 338 |
+
setattr(upsample_block, 'b2', b2)
|
| 339 |
+
setattr(upsample_block, 's1', s1)
|
| 340 |
+
setattr(upsample_block, 's2', s2)
|