Spaces:
Running
on
Zero
Running
on
Zero
Delete free_lunch_utils.py
Browse files- free_lunch_utils.py +0 -340
free_lunch_utils.py
DELETED
@@ -1,340 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.fft as fft
|
3 |
-
from diffusers.models.unets.unet_2d_condition import logger
|
4 |
-
from diffusers.utils import is_torch_version
|
5 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
6 |
-
|
7 |
-
|
8 |
-
def isinstance_str(x: object, cls_name: str):
|
9 |
-
"""
|
10 |
-
Checks whether x has any class *named* cls_name in its ancestry.
|
11 |
-
Doesn't require access to the class's implementation.
|
12 |
-
|
13 |
-
Useful for patching!
|
14 |
-
"""
|
15 |
-
|
16 |
-
for _cls in x.__class__.__mro__:
|
17 |
-
if _cls.__name__ == cls_name:
|
18 |
-
return True
|
19 |
-
|
20 |
-
return False
|
21 |
-
|
22 |
-
|
23 |
-
def Fourier_filter(x, threshold, scale):
|
24 |
-
dtype = x.dtype
|
25 |
-
x = x.type(torch.float32)
|
26 |
-
# FFT
|
27 |
-
x_freq = fft.fftn(x, dim=(-2, -1))
|
28 |
-
x_freq = fft.fftshift(x_freq, dim=(-2, -1))
|
29 |
-
|
30 |
-
B, C, H, W = x_freq.shape
|
31 |
-
mask = torch.ones((B, C, H, W)).cuda()
|
32 |
-
|
33 |
-
crow, ccol = H // 2, W //2
|
34 |
-
mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale
|
35 |
-
x_freq = x_freq * mask
|
36 |
-
|
37 |
-
# IFFT
|
38 |
-
x_freq = fft.ifftshift(x_freq, dim=(-2, -1))
|
39 |
-
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real
|
40 |
-
|
41 |
-
x_filtered = x_filtered.type(dtype)
|
42 |
-
return x_filtered
|
43 |
-
|
44 |
-
|
45 |
-
def register_upblock2d(model):
|
46 |
-
def up_forward(self):
|
47 |
-
def forward(hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
48 |
-
for resnet in self.resnets:
|
49 |
-
# pop res hidden states
|
50 |
-
res_hidden_states = res_hidden_states_tuple[-1]
|
51 |
-
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
52 |
-
#print(f"in upblock2d, hidden states shape: {hidden_states.shape}")
|
53 |
-
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
54 |
-
|
55 |
-
if self.training and self.gradient_checkpointing:
|
56 |
-
|
57 |
-
def create_custom_forward(module):
|
58 |
-
def custom_forward(*inputs):
|
59 |
-
return module(*inputs)
|
60 |
-
|
61 |
-
return custom_forward
|
62 |
-
|
63 |
-
if is_torch_version(">=", "1.11.0"):
|
64 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
65 |
-
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
66 |
-
)
|
67 |
-
else:
|
68 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
69 |
-
create_custom_forward(resnet), hidden_states, temb
|
70 |
-
)
|
71 |
-
else:
|
72 |
-
hidden_states = resnet(hidden_states, temb)
|
73 |
-
|
74 |
-
if self.upsamplers is not None:
|
75 |
-
for upsampler in self.upsamplers:
|
76 |
-
hidden_states = upsampler(hidden_states, upsample_size)
|
77 |
-
|
78 |
-
return hidden_states
|
79 |
-
|
80 |
-
return forward
|
81 |
-
|
82 |
-
for i, upsample_block in enumerate(model.unet.up_blocks):
|
83 |
-
if isinstance_str(upsample_block, "UpBlock2D"):
|
84 |
-
upsample_block.forward = up_forward(upsample_block)
|
85 |
-
|
86 |
-
|
87 |
-
def register_free_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
|
88 |
-
def up_forward(self):
|
89 |
-
def forward(hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
90 |
-
for resnet in self.resnets:
|
91 |
-
# pop res hidden states
|
92 |
-
res_hidden_states = res_hidden_states_tuple[-1]
|
93 |
-
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
94 |
-
#print(f"in free upblock2d, hidden states shape: {hidden_states.shape}")
|
95 |
-
|
96 |
-
# # --------------- FreeU code -----------------------
|
97 |
-
# # Only operate on the first two stages
|
98 |
-
# if hidden_states.shape[1] == 1280:
|
99 |
-
# hidden_states[:,:640] = hidden_states[:,:640] * self.b1
|
100 |
-
# res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1)
|
101 |
-
# if hidden_states.shape[1] == 640:
|
102 |
-
# hidden_states[:,:320] = hidden_states[:,:320] * self.b2
|
103 |
-
# res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2)
|
104 |
-
# # ---------------------------------------------------------
|
105 |
-
|
106 |
-
# --------------- FreeU code -----------------------
|
107 |
-
# Only operate on the first two stages
|
108 |
-
if hidden_states.shape[1] == 1280:
|
109 |
-
hidden_mean = hidden_states.mean(1).unsqueeze(1)
|
110 |
-
B = hidden_mean.shape[0]
|
111 |
-
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
112 |
-
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
113 |
-
|
114 |
-
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)
|
115 |
-
|
116 |
-
hidden_states[:,:640] = hidden_states[:,:640] * ((self.b1 - 1 ) * hidden_mean + 1)
|
117 |
-
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1)
|
118 |
-
if hidden_states.shape[1] == 640:
|
119 |
-
hidden_mean = hidden_states.mean(1).unsqueeze(1)
|
120 |
-
B = hidden_mean.shape[0]
|
121 |
-
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
122 |
-
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
123 |
-
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)
|
124 |
-
|
125 |
-
hidden_states[:,:320] = hidden_states[:,:320] * ((self.b2 - 1 ) * hidden_mean + 1)
|
126 |
-
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2)
|
127 |
-
# ---------------------------------------------------------
|
128 |
-
|
129 |
-
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
130 |
-
|
131 |
-
if self.training and self.gradient_checkpointing:
|
132 |
-
|
133 |
-
def create_custom_forward(module):
|
134 |
-
def custom_forward(*inputs):
|
135 |
-
return module(*inputs)
|
136 |
-
|
137 |
-
return custom_forward
|
138 |
-
|
139 |
-
if is_torch_version(">=", "1.11.0"):
|
140 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
141 |
-
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
142 |
-
)
|
143 |
-
else:
|
144 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
145 |
-
create_custom_forward(resnet), hidden_states, temb
|
146 |
-
)
|
147 |
-
else:
|
148 |
-
hidden_states = resnet(hidden_states, temb)
|
149 |
-
|
150 |
-
if self.upsamplers is not None:
|
151 |
-
for upsampler in self.upsamplers:
|
152 |
-
hidden_states = upsampler(hidden_states, upsample_size)
|
153 |
-
|
154 |
-
return hidden_states
|
155 |
-
|
156 |
-
return forward
|
157 |
-
|
158 |
-
for i, upsample_block in enumerate(model.unet.up_blocks):
|
159 |
-
if isinstance_str(upsample_block, "UpBlock2D"):
|
160 |
-
upsample_block.forward = up_forward(upsample_block)
|
161 |
-
setattr(upsample_block, 'b1', b1)
|
162 |
-
setattr(upsample_block, 'b2', b2)
|
163 |
-
setattr(upsample_block, 's1', s1)
|
164 |
-
setattr(upsample_block, 's2', s2)
|
165 |
-
|
166 |
-
|
167 |
-
def register_crossattn_upblock2d(model):
|
168 |
-
def up_forward(self):
|
169 |
-
def forward(
|
170 |
-
hidden_states: torch.FloatTensor,
|
171 |
-
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
172 |
-
temb: Optional[torch.FloatTensor] = None,
|
173 |
-
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
174 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
175 |
-
upsample_size: Optional[int] = None,
|
176 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
177 |
-
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
178 |
-
):
|
179 |
-
for resnet, attn in zip(self.resnets, self.attentions):
|
180 |
-
# pop res hidden states
|
181 |
-
#print(f"in crossatten upblock2d, hidden states shape: {hidden_states.shape}")
|
182 |
-
res_hidden_states = res_hidden_states_tuple[-1]
|
183 |
-
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
184 |
-
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
185 |
-
|
186 |
-
if self.training and self.gradient_checkpointing:
|
187 |
-
|
188 |
-
def create_custom_forward(module, return_dict=None):
|
189 |
-
def custom_forward(*inputs):
|
190 |
-
if return_dict is not None:
|
191 |
-
return module(*inputs, return_dict=return_dict)
|
192 |
-
else:
|
193 |
-
return module(*inputs)
|
194 |
-
|
195 |
-
return custom_forward
|
196 |
-
|
197 |
-
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
198 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
199 |
-
create_custom_forward(resnet),
|
200 |
-
hidden_states,
|
201 |
-
temb,
|
202 |
-
**ckpt_kwargs,
|
203 |
-
)
|
204 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
205 |
-
create_custom_forward(attn, return_dict=False),
|
206 |
-
hidden_states,
|
207 |
-
encoder_hidden_states,
|
208 |
-
None, # timestep
|
209 |
-
None, # class_labels
|
210 |
-
cross_attention_kwargs,
|
211 |
-
attention_mask,
|
212 |
-
encoder_attention_mask,
|
213 |
-
**ckpt_kwargs,
|
214 |
-
)[0]
|
215 |
-
else:
|
216 |
-
hidden_states = resnet(hidden_states, temb)
|
217 |
-
hidden_states = attn(
|
218 |
-
hidden_states,
|
219 |
-
encoder_hidden_states=encoder_hidden_states,
|
220 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
221 |
-
attention_mask=attention_mask,
|
222 |
-
encoder_attention_mask=encoder_attention_mask,
|
223 |
-
return_dict=False,
|
224 |
-
)[0]
|
225 |
-
|
226 |
-
if self.upsamplers is not None:
|
227 |
-
for upsampler in self.upsamplers:
|
228 |
-
hidden_states = upsampler(hidden_states, upsample_size)
|
229 |
-
|
230 |
-
return hidden_states
|
231 |
-
|
232 |
-
return forward
|
233 |
-
|
234 |
-
for i, upsample_block in enumerate(model.unet.up_blocks):
|
235 |
-
if isinstance_str(upsample_block, "CrossAttnUpBlock2D"):
|
236 |
-
upsample_block.forward = up_forward(upsample_block)
|
237 |
-
|
238 |
-
|
239 |
-
def register_free_crossattn_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
|
240 |
-
def up_forward(self):
|
241 |
-
def forward(
|
242 |
-
hidden_states: torch.FloatTensor,
|
243 |
-
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
244 |
-
temb: Optional[torch.FloatTensor] = None,
|
245 |
-
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
246 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
247 |
-
upsample_size: Optional[int] = None,
|
248 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
249 |
-
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
250 |
-
):
|
251 |
-
for resnet, attn in zip(self.resnets, self.attentions):
|
252 |
-
# pop res hidden states
|
253 |
-
#print(f"in free crossatten upblock2d, hidden states shape: {hidden_states.shape}")
|
254 |
-
res_hidden_states = res_hidden_states_tuple[-1]
|
255 |
-
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
256 |
-
|
257 |
-
# --------------- FreeU code -----------------------
|
258 |
-
# Only operate on the first two stages
|
259 |
-
if hidden_states.shape[1] == 1280:
|
260 |
-
hidden_mean = hidden_states.mean(1).unsqueeze(1)
|
261 |
-
B = hidden_mean.shape[0]
|
262 |
-
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
263 |
-
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
264 |
-
|
265 |
-
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)
|
266 |
-
|
267 |
-
hidden_states[:,:640] = hidden_states[:,:640] * ((self.b1 - 1 ) * hidden_mean + 1)
|
268 |
-
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1)
|
269 |
-
if hidden_states.shape[1] == 640:
|
270 |
-
hidden_mean = hidden_states.mean(1).unsqueeze(1)
|
271 |
-
B = hidden_mean.shape[0]
|
272 |
-
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
273 |
-
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
274 |
-
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)
|
275 |
-
|
276 |
-
hidden_states[:,:320] = hidden_states[:,:320] * ((self.b2 - 1 ) * hidden_mean + 1)
|
277 |
-
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2)
|
278 |
-
# ---------------------------------------------------------
|
279 |
-
|
280 |
-
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
281 |
-
|
282 |
-
if self.training and self.gradient_checkpointing:
|
283 |
-
|
284 |
-
def create_custom_forward(module, return_dict=None):
|
285 |
-
def custom_forward(*inputs):
|
286 |
-
if return_dict is not None:
|
287 |
-
return module(*inputs, return_dict=return_dict)
|
288 |
-
else:
|
289 |
-
return module(*inputs)
|
290 |
-
|
291 |
-
return custom_forward
|
292 |
-
|
293 |
-
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
294 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
295 |
-
create_custom_forward(resnet),
|
296 |
-
hidden_states,
|
297 |
-
temb,
|
298 |
-
**ckpt_kwargs,
|
299 |
-
)
|
300 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
301 |
-
create_custom_forward(attn, return_dict=False),
|
302 |
-
hidden_states,
|
303 |
-
encoder_hidden_states,
|
304 |
-
None, # timestep
|
305 |
-
None, # class_labels
|
306 |
-
cross_attention_kwargs,
|
307 |
-
attention_mask,
|
308 |
-
encoder_attention_mask,
|
309 |
-
**ckpt_kwargs,
|
310 |
-
)[0]
|
311 |
-
else:
|
312 |
-
hidden_states = resnet(hidden_states, temb)
|
313 |
-
# hidden_states = attn(
|
314 |
-
# hidden_states,
|
315 |
-
# encoder_hidden_states=encoder_hidden_states,
|
316 |
-
# cross_attention_kwargs=cross_attention_kwargs,
|
317 |
-
# encoder_attention_mask=encoder_attention_mask,
|
318 |
-
# return_dict=False,
|
319 |
-
# )[0]
|
320 |
-
hidden_states = attn(
|
321 |
-
hidden_states,
|
322 |
-
encoder_hidden_states=encoder_hidden_states,
|
323 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
324 |
-
)[0]
|
325 |
-
|
326 |
-
if self.upsamplers is not None:
|
327 |
-
for upsampler in self.upsamplers:
|
328 |
-
hidden_states = upsampler(hidden_states, upsample_size)
|
329 |
-
|
330 |
-
return hidden_states
|
331 |
-
|
332 |
-
return forward
|
333 |
-
|
334 |
-
for i, upsample_block in enumerate(model.unet.up_blocks):
|
335 |
-
if isinstance_str(upsample_block, "CrossAttnUpBlock2D"):
|
336 |
-
upsample_block.forward = up_forward(upsample_block)
|
337 |
-
setattr(upsample_block, 'b1', b1)
|
338 |
-
setattr(upsample_block, 'b2', b2)
|
339 |
-
setattr(upsample_block, 's1', s1)
|
340 |
-
setattr(upsample_block, 's2', s2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|