1inkusFace commited on
Commit
bde02f5
·
verified ·
1 Parent(s): a96a646

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -3,20 +3,20 @@ import torch
3
  import os
4
  from diffusers import AutoencoderKLLTXVideo, LTXImageToVideoPipeline, LTXVideoTransformer3DModel
5
  from transformers import T5EncoderModel
6
- from diffusers.utils import export_to_video, load_image #, PIL_INTERPOLATION
7
 
8
  import gradio as gr
9
  import numpy as np
10
  import random
11
  from PIL import Image
12
- import imageio.v3
13
 
14
  torch.backends.cuda.matmul.allow_tf32 = False
15
  torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
16
  torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
17
  torch.backends.cudnn.allow_tf32 = False
18
  torch.backends.cudnn.deterministic = False
19
- torch.backends.cudnn.benchmark = False
20
  #torch.backends.cuda.preferred_blas_library="cublas"
21
  #torch.backends.cuda.preferred_linalg_library="cusolver"
22
  torch.set_float32_matmul_precision("highest")
@@ -80,17 +80,17 @@ iface = gr.Interface(
80
  inputs=[
81
  gr.Image(type="filepath", label="Image"),
82
  gr.Textbox(lines=2, label="Prompt"),
83
- gr.Textbox(lines=2, label="Negative Prompt"),
84
  gr.Slider(minimum=256, maximum=1024, step=8, value=704, label="Width"),
85
  gr.Slider(minimum=256, maximum=1024, step=8, value=704, label="Height"),
86
  gr.Slider(minimum=16, maximum=256, step=16, value=111, label="Number of Frames"),
87
- gr.Slider(minimum=0.0, maximum=30.0, step=0.01, value=3.8, label="Guidance Scale"),
88
- gr.Slider(minimum=1, maximum=100, step=1, value=40, label="Number of Inference Steps"),
89
  gr.Slider(minimum=1, maximum=60, step=1, value=25, label="FPS"),
90
  ],
91
  outputs=gr.Video(label="Generated Video"),
92
  title="LTX-Video Test D",
93
- description="Generate video from image with LTX-Video.",
94
  )
95
 
96
  iface.launch()
 
3
  import os
4
  from diffusers import AutoencoderKLLTXVideo, LTXImageToVideoPipeline, LTXVideoTransformer3DModel
5
  from transformers import T5EncoderModel
6
+ from diffusers.utils import export_to_video #, load_image #, PIL_INTERPOLATION
7
 
8
  import gradio as gr
9
  import numpy as np
10
  import random
11
  from PIL import Image
12
+ # import imageio.v3
13
 
14
  torch.backends.cuda.matmul.allow_tf32 = False
15
  torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
16
  torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
17
  torch.backends.cudnn.allow_tf32 = False
18
  torch.backends.cudnn.deterministic = False
19
+ torch.backends.cudnn.benchmark = True
20
  #torch.backends.cuda.preferred_blas_library="cublas"
21
  #torch.backends.cuda.preferred_linalg_library="cusolver"
22
  torch.set_float32_matmul_precision("highest")
 
80
  inputs=[
81
  gr.Image(type="filepath", label="Image"),
82
  gr.Textbox(lines=2, label="Prompt"),
83
+ gr.Textbox(lines=2, label="Negative Prompt", value="blurry, distorted"),
84
  gr.Slider(minimum=256, maximum=1024, step=8, value=704, label="Width"),
85
  gr.Slider(minimum=256, maximum=1024, step=8, value=704, label="Height"),
86
  gr.Slider(minimum=16, maximum=256, step=16, value=111, label="Number of Frames"),
87
+ gr.Slider(minimum=0.0, maximum=30.0, step=0.05, value=3.35, label="Guidance Scale"),
88
+ gr.Slider(minimum=1, maximum=100, step=1, value=50, label="Number of Inference Steps"),
89
  gr.Slider(minimum=1, maximum=60, step=1, value=25, label="FPS"),
90
  ],
91
  outputs=gr.Video(label="Generated Video"),
92
  title="LTX-Video Test D",
93
+ description="Generate video from image with LTX-Image-to-Video.",
94
  )
95
 
96
  iface.launch()