Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
74a242e
unverified
·
0
Parent(s):
init
Browse files- .gitattributes +35 -0
- .gitignore +164 -0
- .python-version +1 -0
- README.md +13 -0
- examples/model_1.jpg +0 -0
- examples/model_2.jpg +0 -0
- examples/model_3.jpg +0 -0
- examples/model_4.jpg +0 -0
- examples/model_5.jpg +0 -0
- examples/model_6.jpg +0 -0
- examples/model_7.jpg +0 -0
- examples/model_8.jpg +0 -0
- examples/model_9.jpg +0 -0
- pyproject.toml +19 -0
- src/app.py +188 -0
- src/pipeline.py +159 -0
- uv.lock +0 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.gradio
|
2 |
+
|
3 |
+
# Byte-compiled / optimized / DLL files
|
4 |
+
__pycache__/
|
5 |
+
*.py[cod]
|
6 |
+
*$py.class
|
7 |
+
|
8 |
+
# C extensions
|
9 |
+
*.so
|
10 |
+
|
11 |
+
# Distribution / packaging
|
12 |
+
.Python
|
13 |
+
build/
|
14 |
+
develop-eggs/
|
15 |
+
dist/
|
16 |
+
downloads/
|
17 |
+
eggs/
|
18 |
+
.eggs/
|
19 |
+
lib/
|
20 |
+
lib64/
|
21 |
+
parts/
|
22 |
+
sdist/
|
23 |
+
var/
|
24 |
+
wheels/
|
25 |
+
share/python-wheels/
|
26 |
+
*.egg-info/
|
27 |
+
.installed.cfg
|
28 |
+
*.egg
|
29 |
+
MANIFEST
|
30 |
+
|
31 |
+
# PyInstaller
|
32 |
+
# Usually these files are written by a python script from a template
|
33 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
34 |
+
*.manifest
|
35 |
+
*.spec
|
36 |
+
|
37 |
+
# Installer logs
|
38 |
+
pip-log.txt
|
39 |
+
pip-delete-this-directory.txt
|
40 |
+
|
41 |
+
# Unit test / coverage reports
|
42 |
+
htmlcov/
|
43 |
+
.tox/
|
44 |
+
.nox/
|
45 |
+
.coverage
|
46 |
+
.coverage.*
|
47 |
+
.cache
|
48 |
+
nosetests.xml
|
49 |
+
coverage.xml
|
50 |
+
*.cover
|
51 |
+
*.py,cover
|
52 |
+
.hypothesis/
|
53 |
+
.pytest_cache/
|
54 |
+
cover/
|
55 |
+
|
56 |
+
# Translations
|
57 |
+
*.mo
|
58 |
+
*.pot
|
59 |
+
|
60 |
+
# Django stuff:
|
61 |
+
*.log
|
62 |
+
local_settings.py
|
63 |
+
db.sqlite3
|
64 |
+
db.sqlite3-journal
|
65 |
+
|
66 |
+
# Flask stuff:
|
67 |
+
instance/
|
68 |
+
.webassets-cache
|
69 |
+
|
70 |
+
# Scrapy stuff:
|
71 |
+
.scrapy
|
72 |
+
|
73 |
+
# Sphinx documentation
|
74 |
+
docs/_build/
|
75 |
+
|
76 |
+
# PyBuilder
|
77 |
+
.pybuilder/
|
78 |
+
target/
|
79 |
+
|
80 |
+
# Jupyter Notebook
|
81 |
+
.ipynb_checkpoints
|
82 |
+
|
83 |
+
# IPython
|
84 |
+
profile_default/
|
85 |
+
ipython_config.py
|
86 |
+
|
87 |
+
# pyenv
|
88 |
+
# For a library or package, you might want to ignore these files since the code is
|
89 |
+
# intended to run in multiple environments; otherwise, check them in:
|
90 |
+
# .python-version
|
91 |
+
|
92 |
+
# pipenv
|
93 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
94 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
95 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
96 |
+
# install all needed dependencies.
|
97 |
+
#Pipfile.lock
|
98 |
+
|
99 |
+
# poetry
|
100 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
101 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
102 |
+
# commonly ignored for libraries.
|
103 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
104 |
+
#poetry.lock
|
105 |
+
|
106 |
+
# pdm
|
107 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
108 |
+
#pdm.lock
|
109 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
110 |
+
# in version control.
|
111 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
112 |
+
.pdm.toml
|
113 |
+
.pdm-python
|
114 |
+
.pdm-build/
|
115 |
+
|
116 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
117 |
+
__pypackages__/
|
118 |
+
|
119 |
+
# Celery stuff
|
120 |
+
celerybeat-schedule
|
121 |
+
celerybeat.pid
|
122 |
+
|
123 |
+
# SageMath parsed files
|
124 |
+
*.sage.py
|
125 |
+
|
126 |
+
# Environments
|
127 |
+
.env
|
128 |
+
.venv
|
129 |
+
env/
|
130 |
+
venv/
|
131 |
+
ENV/
|
132 |
+
env.bak/
|
133 |
+
venv.bak/
|
134 |
+
|
135 |
+
# Spyder project settings
|
136 |
+
.spyderproject
|
137 |
+
.spyproject
|
138 |
+
|
139 |
+
# Rope project settings
|
140 |
+
.ropeproject
|
141 |
+
|
142 |
+
# mkdocs documentation
|
143 |
+
/site
|
144 |
+
|
145 |
+
# mypy
|
146 |
+
.mypy_cache/
|
147 |
+
.dmypy.json
|
148 |
+
dmypy.json
|
149 |
+
|
150 |
+
# Pyre type checker
|
151 |
+
.pyre/
|
152 |
+
|
153 |
+
# pytype static type analyzer
|
154 |
+
.pytype/
|
155 |
+
|
156 |
+
# Cython debug symbols
|
157 |
+
cython_debug/
|
158 |
+
|
159 |
+
# PyCharm
|
160 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
161 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
162 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
163 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
164 |
+
#.idea/
|
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.11
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: TryOffAnyone
|
3 |
+
emoji: 👕
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.9.1
|
8 |
+
app_file: src/app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
examples/model_1.jpg
ADDED
![]() |
examples/model_2.jpg
ADDED
![]() |
examples/model_3.jpg
ADDED
![]() |
examples/model_4.jpg
ADDED
![]() |
examples/model_5.jpg
ADDED
![]() |
examples/model_6.jpg
ADDED
![]() |
examples/model_7.jpg
ADDED
![]() |
examples/model_8.jpg
ADDED
![]() |
examples/model_9.jpg
ADDED
![]() |
pyproject.toml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
dependencies = [
|
3 |
+
"accelerate>=1.2.1",
|
4 |
+
"diffusers>=0.32.1",
|
5 |
+
"gradio>=5.9.1",
|
6 |
+
"pillow-heif>=0.21.0",
|
7 |
+
"scikit-image>=0.25.0",
|
8 |
+
"spaces>=0.31.1",
|
9 |
+
"torchvision>=0.20.1",
|
10 |
+
"transformers>=4.47.1",
|
11 |
+
]
|
12 |
+
description = "TryOffAnyone: Tiled Cloth Generation from a Dressed Person "
|
13 |
+
name = "try-off-anyone"
|
14 |
+
readme = "README.md"
|
15 |
+
requires-python = ">=3.11"
|
16 |
+
version = "0.1.0"
|
17 |
+
|
18 |
+
[tool.ruff]
|
19 |
+
line-length = 120
|
src/app.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import TypedDict
|
2 |
+
|
3 |
+
import diffusers.image_processor
|
4 |
+
import gradio as gr
|
5 |
+
import pillow_heif # pyright: ignore[reportMissingTypeStubs]
|
6 |
+
import spaces # pyright: ignore[reportMissingTypeStubs]
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
from pipeline import TryOffAnyone
|
11 |
+
|
12 |
+
pillow_heif.register_heif_opener() # pyright: ignore[reportUnknownMemberType]
|
13 |
+
pillow_heif.register_avif_opener() # pyright: ignore[reportUnknownMemberType]
|
14 |
+
|
15 |
+
torch.set_float32_matmul_precision("high")
|
16 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
17 |
+
|
18 |
+
TITLE = """
|
19 |
+
# Try Off Anyone
|
20 |
+
|
21 |
+
## ⚠️ Important
|
22 |
+
|
23 |
+
1. Choose an example image or upload your own
|
24 |
+
2. Use the Pen tool to draw a mask over the clothing area you want to extract
|
25 |
+
|
26 |
+
[](https://arxiv.org/abs/2412.08573)
|
27 |
+
"""
|
28 |
+
|
29 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
30 |
+
DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
31 |
+
|
32 |
+
pipeline_tryoff = TryOffAnyone(
|
33 |
+
device=DEVICE,
|
34 |
+
dtype=DTYPE,
|
35 |
+
)
|
36 |
+
mask_processor = diffusers.image_processor.VaeImageProcessor(
|
37 |
+
vae_scale_factor=8,
|
38 |
+
do_normalize=False,
|
39 |
+
do_binarize=True,
|
40 |
+
do_convert_grayscale=True,
|
41 |
+
)
|
42 |
+
vae_processor = diffusers.image_processor.VaeImageProcessor(
|
43 |
+
vae_scale_factor=8,
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
class ImageData(TypedDict):
|
48 |
+
background: Image.Image
|
49 |
+
composite: Image.Image
|
50 |
+
layers: list[Image.Image]
|
51 |
+
|
52 |
+
|
53 |
+
@spaces.GPU
|
54 |
+
def process(
|
55 |
+
image_data: ImageData,
|
56 |
+
image_width: int,
|
57 |
+
image_height: int,
|
58 |
+
num_inference_steps: int,
|
59 |
+
condition_scale: float,
|
60 |
+
seed: int,
|
61 |
+
) -> Image.Image:
|
62 |
+
assert image_width > 0
|
63 |
+
assert image_height > 0
|
64 |
+
assert num_inference_steps > 0
|
65 |
+
assert condition_scale > 0
|
66 |
+
assert seed >= 0
|
67 |
+
|
68 |
+
# extract image and mask from image_data
|
69 |
+
image = image_data["background"]
|
70 |
+
mask = image_data["layers"][0]
|
71 |
+
|
72 |
+
# preprocess image
|
73 |
+
image = image.convert("RGB").resize((image_width, image_height))
|
74 |
+
image_preprocessed = vae_processor.preprocess( # pyright: ignore[reportUnknownMemberType,reportAssignmentType]
|
75 |
+
image=image,
|
76 |
+
width=image_width,
|
77 |
+
height=image_height,
|
78 |
+
)[0]
|
79 |
+
|
80 |
+
# preprocess mask
|
81 |
+
mask = mask.getchannel("A").resize((image_width, image_height))
|
82 |
+
mask_preprocessed = mask_processor.preprocess( # pyright: ignore[reportUnknownMemberType]
|
83 |
+
image=mask,
|
84 |
+
width=image_width,
|
85 |
+
height=image_height,
|
86 |
+
)[0]
|
87 |
+
|
88 |
+
# generate the TryOff image
|
89 |
+
gen = torch.Generator(device=DEVICE).manual_seed(seed)
|
90 |
+
tryoff_image = pipeline_tryoff(
|
91 |
+
image_preprocessed,
|
92 |
+
mask_preprocessed,
|
93 |
+
inference_steps=num_inference_steps,
|
94 |
+
scale=condition_scale,
|
95 |
+
generator=gen,
|
96 |
+
)[0]
|
97 |
+
|
98 |
+
return tryoff_image
|
99 |
+
|
100 |
+
|
101 |
+
with gr.Blocks() as demo:
|
102 |
+
gr.Markdown(TITLE)
|
103 |
+
|
104 |
+
with gr.Row():
|
105 |
+
with gr.Column():
|
106 |
+
input_image = gr.ImageMask(
|
107 |
+
label="Input Image",
|
108 |
+
height=1024, # https://github.com/gradio-app/gradio/issues/10236
|
109 |
+
type="pil",
|
110 |
+
interactive=True,
|
111 |
+
)
|
112 |
+
run_button = gr.Button(
|
113 |
+
value="Extract Clothing",
|
114 |
+
)
|
115 |
+
gr.Examples(
|
116 |
+
examples=[
|
117 |
+
["examples/model_1.jpg"],
|
118 |
+
["examples/model_2.jpg"],
|
119 |
+
["examples/model_3.jpg"],
|
120 |
+
["examples/model_4.jpg"],
|
121 |
+
["examples/model_5.jpg"],
|
122 |
+
["examples/model_6.jpg"],
|
123 |
+
["examples/model_7.jpg"],
|
124 |
+
["examples/model_8.jpg"],
|
125 |
+
["examples/model_9.jpg"],
|
126 |
+
],
|
127 |
+
inputs=[input_image],
|
128 |
+
)
|
129 |
+
with gr.Column():
|
130 |
+
output_image = gr.Image(
|
131 |
+
label="TryOff result",
|
132 |
+
height=1024,
|
133 |
+
image_mode="RGB",
|
134 |
+
type="pil",
|
135 |
+
)
|
136 |
+
|
137 |
+
with gr.Accordion("Advanced Settings", open=True):
|
138 |
+
seed = gr.Slider(
|
139 |
+
label="Seed",
|
140 |
+
minimum=0,
|
141 |
+
maximum=100_000,
|
142 |
+
value=69_420,
|
143 |
+
step=1,
|
144 |
+
)
|
145 |
+
scale = gr.Slider(
|
146 |
+
label="Scale",
|
147 |
+
minimum=0.5,
|
148 |
+
maximum=5,
|
149 |
+
value=2.5,
|
150 |
+
step=0.05,
|
151 |
+
)
|
152 |
+
num_inference_steps = gr.Slider(
|
153 |
+
label="Number of inference steps",
|
154 |
+
minimum=1,
|
155 |
+
maximum=50,
|
156 |
+
value=25,
|
157 |
+
step=1,
|
158 |
+
)
|
159 |
+
with gr.Row():
|
160 |
+
image_width = gr.Slider(
|
161 |
+
label="Image Width",
|
162 |
+
minimum=64,
|
163 |
+
maximum=1024,
|
164 |
+
value=384,
|
165 |
+
step=8,
|
166 |
+
)
|
167 |
+
image_height = gr.Slider(
|
168 |
+
label="Image Height",
|
169 |
+
minimum=64,
|
170 |
+
maximum=1024,
|
171 |
+
value=512,
|
172 |
+
step=8,
|
173 |
+
)
|
174 |
+
|
175 |
+
run_button.click(
|
176 |
+
fn=process,
|
177 |
+
inputs=[
|
178 |
+
input_image,
|
179 |
+
image_width,
|
180 |
+
image_height,
|
181 |
+
num_inference_steps,
|
182 |
+
scale,
|
183 |
+
seed,
|
184 |
+
],
|
185 |
+
outputs=output_image,
|
186 |
+
)
|
187 |
+
|
188 |
+
demo.launch()
|
src/pipeline.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# type: ignore
|
2 |
+
# Inspired from https://github.com/ixarchakos/try-off-anyone/blob/aa3045453013065573a647e4536922bac696b968/src/model/pipeline.py
|
3 |
+
# Inspired from https://github.com/ixarchakos/try-off-anyone/blob/aa3045453013065573a647e4536922bac696b968/src/model/attention.py
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from accelerate import load_checkpoint_in_model
|
7 |
+
from diffusers import AutoencoderKL, DDIMScheduler, UNet2DConditionModel
|
8 |
+
from diffusers.models.attention_processor import AttnProcessor
|
9 |
+
from diffusers.utils.torch_utils import randn_tensor
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
+
from PIL import Image
|
12 |
+
|
13 |
+
|
14 |
+
class Skip(torch.nn.Module):
|
15 |
+
def __init__(self) -> None:
|
16 |
+
super().__init__()
|
17 |
+
|
18 |
+
def __call__(
|
19 |
+
self,
|
20 |
+
attn: torch.Tensor,
|
21 |
+
hidden_states: torch.Tensor,
|
22 |
+
encoder_hidden_states: torch.Tensor = None,
|
23 |
+
attention_mask: torch.Tensor = None,
|
24 |
+
temb: torch.Tensor = None,
|
25 |
+
) -> torch.Tensor:
|
26 |
+
return hidden_states
|
27 |
+
|
28 |
+
|
29 |
+
def fine_tuned_modules(unet: UNet2DConditionModel) -> torch.nn.ModuleList:
|
30 |
+
trainable_modules = torch.nn.ModuleList()
|
31 |
+
|
32 |
+
for blocks in [unet.down_blocks, unet.mid_block, unet.up_blocks]:
|
33 |
+
if hasattr(blocks, "attentions"):
|
34 |
+
trainable_modules.append(blocks.attentions)
|
35 |
+
else:
|
36 |
+
for block in blocks:
|
37 |
+
if hasattr(block, "attentions"):
|
38 |
+
trainable_modules.append(block.attentions)
|
39 |
+
|
40 |
+
return trainable_modules
|
41 |
+
|
42 |
+
|
43 |
+
def skip_cross_attentions(unet: UNet2DConditionModel) -> dict[str, AttnProcessor | Skip]:
|
44 |
+
attn_processors = {
|
45 |
+
name: unet.attn_processors[name] if name.endswith("attn1.processor") else Skip()
|
46 |
+
for name in unet.attn_processors.keys()
|
47 |
+
}
|
48 |
+
return attn_processors
|
49 |
+
|
50 |
+
|
51 |
+
def encode(image: torch.Tensor, vae: AutoencoderKL) -> torch.Tensor:
|
52 |
+
image = image.to(memory_format=torch.contiguous_format).float().to(vae.device, dtype=vae.dtype)
|
53 |
+
with torch.no_grad():
|
54 |
+
return vae.encode(image).latent_dist.sample() * vae.config.scaling_factor
|
55 |
+
|
56 |
+
|
57 |
+
class TryOffAnyone:
|
58 |
+
def __init__(
|
59 |
+
self,
|
60 |
+
device: torch.device,
|
61 |
+
dtype: torch.dtype,
|
62 |
+
concat_dim: int = -2,
|
63 |
+
) -> None:
|
64 |
+
self.concat_dim = concat_dim
|
65 |
+
self.device = device
|
66 |
+
self.dtype = dtype
|
67 |
+
|
68 |
+
self.noise_scheduler = DDIMScheduler.from_pretrained(
|
69 |
+
pretrained_model_name_or_path="stable-diffusion-v1-5/stable-diffusion-inpainting",
|
70 |
+
subfolder="scheduler",
|
71 |
+
)
|
72 |
+
self.vae = AutoencoderKL.from_pretrained(
|
73 |
+
pretrained_model_name_or_path="stabilityai/sd-vae-ft-mse",
|
74 |
+
).to(device, dtype=dtype)
|
75 |
+
self.unet = UNet2DConditionModel.from_pretrained(
|
76 |
+
pretrained_model_name_or_path="stable-diffusion-v1-5/stable-diffusion-inpainting",
|
77 |
+
subfolder="unet",
|
78 |
+
variant="fp16",
|
79 |
+
).to(device, dtype=dtype)
|
80 |
+
|
81 |
+
self.unet.set_attn_processor(skip_cross_attentions(self.unet))
|
82 |
+
load_checkpoint_in_model(
|
83 |
+
model=fine_tuned_modules(unet=self.unet),
|
84 |
+
checkpoint=hf_hub_download(
|
85 |
+
repo_id="ixarchakos/tryOffAnyone",
|
86 |
+
filename="model.safetensors",
|
87 |
+
),
|
88 |
+
)
|
89 |
+
|
90 |
+
@torch.no_grad()
|
91 |
+
def __call__(
|
92 |
+
self,
|
93 |
+
image: torch.Tensor,
|
94 |
+
mask: torch.Tensor,
|
95 |
+
inference_steps: int,
|
96 |
+
scale: float,
|
97 |
+
generator: torch.Generator,
|
98 |
+
) -> list[Image.Image]:
|
99 |
+
image = image.unsqueeze(0).to(self.device, dtype=self.dtype)
|
100 |
+
mask = (mask.unsqueeze(0) > 0.5).to(self.device, dtype=self.dtype)
|
101 |
+
masked_image = image * (mask < 0.5)
|
102 |
+
|
103 |
+
masked_latent = encode(masked_image, self.vae)
|
104 |
+
image_latent = encode(image, self.vae)
|
105 |
+
mask = torch.nn.functional.interpolate(mask, size=masked_latent.shape[-2:], mode="nearest")
|
106 |
+
|
107 |
+
masked_latent_concat = torch.cat([masked_latent, image_latent], dim=self.concat_dim)
|
108 |
+
mask_concat = torch.cat([mask, torch.zeros_like(mask)], dim=self.concat_dim)
|
109 |
+
|
110 |
+
latents = randn_tensor(
|
111 |
+
shape=masked_latent_concat.shape,
|
112 |
+
generator=generator,
|
113 |
+
device=self.device,
|
114 |
+
dtype=self.dtype,
|
115 |
+
)
|
116 |
+
|
117 |
+
self.noise_scheduler.set_timesteps(inference_steps, device=self.device)
|
118 |
+
timesteps = self.noise_scheduler.timesteps
|
119 |
+
|
120 |
+
if do_classifier_free_guidance := (scale > 1.0):
|
121 |
+
masked_latent_concat = torch.cat(
|
122 |
+
[
|
123 |
+
torch.cat([masked_latent, torch.zeros_like(image_latent)], dim=self.concat_dim),
|
124 |
+
masked_latent_concat,
|
125 |
+
]
|
126 |
+
)
|
127 |
+
|
128 |
+
mask_concat = torch.cat([mask_concat] * 2)
|
129 |
+
|
130 |
+
extra_step = {"generator": generator, "eta": 1.0}
|
131 |
+
for t in timesteps:
|
132 |
+
input_latents = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
133 |
+
input_latents = self.noise_scheduler.scale_model_input(input_latents, t)
|
134 |
+
|
135 |
+
input_latents = torch.cat([input_latents, mask_concat, masked_latent_concat], dim=1)
|
136 |
+
|
137 |
+
noise_pred = self.unet(
|
138 |
+
input_latents,
|
139 |
+
t.to(self.device),
|
140 |
+
encoder_hidden_states=None,
|
141 |
+
return_dict=False,
|
142 |
+
)[0]
|
143 |
+
|
144 |
+
if do_classifier_free_guidance:
|
145 |
+
noise_pred_unc, noise_pred_text = noise_pred.chunk(2)
|
146 |
+
noise_pred = noise_pred_unc + scale * (noise_pred_text - noise_pred_unc)
|
147 |
+
|
148 |
+
latents = self.noise_scheduler.step(noise_pred, t, latents, **extra_step).prev_sample
|
149 |
+
|
150 |
+
latents = latents.split(latents.shape[self.concat_dim] // 2, dim=self.concat_dim)[0]
|
151 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
152 |
+
image = self.vae.decode(latents.to(self.device, dtype=self.dtype)).sample
|
153 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
154 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
155 |
+
|
156 |
+
image = (image * 255).round().astype("uint8")
|
157 |
+
image = [Image.fromarray(im) for im in image]
|
158 |
+
|
159 |
+
return image
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|