Spaces:
Runtime error
Runtime error
Update tasks/text.py
Browse files- tasks/text.py +58 -31
tasks/text.py
CHANGED
@@ -2,30 +2,63 @@ from fastapi import APIRouter
|
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
-
import
|
|
|
|
|
6 |
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
10 |
router = APIRouter()
|
11 |
|
12 |
-
DESCRIPTION = "
|
13 |
ROUTE = "/text"
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
async def evaluate_text(request: TextEvaluationRequest):
|
18 |
"""
|
19 |
-
Evaluate text classification for climate disinformation detection.
|
20 |
-
|
21 |
-
Current Model: Random Baseline
|
22 |
-
- Makes random predictions from the label space (0-7)
|
23 |
-
- Used as a baseline for comparison
|
24 |
"""
|
25 |
-
# Get space info
|
26 |
username, space_url = get_space_info()
|
27 |
|
28 |
-
# Define the label mapping
|
29 |
LABEL_MAPPING = {
|
30 |
"0_not_relevant": 0,
|
31 |
"1_not_happening": 1,
|
@@ -37,41 +70,35 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
37 |
"7_fossil_fuels_needed": 7
|
38 |
}
|
39 |
|
40 |
-
# Load and prepare the dataset
|
41 |
dataset = load_dataset(request.dataset_name)
|
42 |
|
43 |
-
# Convert string labels to integers
|
44 |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
45 |
|
46 |
-
# Split dataset
|
47 |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
48 |
test_dataset = train_test["test"]
|
49 |
|
50 |
-
# Start tracking emissions
|
51 |
tracker.start()
|
52 |
tracker.start_task("inference")
|
53 |
|
54 |
-
|
55 |
-
# YOUR MODEL INFERENCE CODE HERE
|
56 |
-
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
57 |
-
#--------------------------------------------------------------------------------------------
|
58 |
-
|
59 |
-
# Make random predictions (placeholder for actual model inference)
|
60 |
true_labels = test_dataset["label"]
|
61 |
-
predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
62 |
-
|
63 |
-
#--------------------------------------------------------------------------------------------
|
64 |
-
# YOUR MODEL INFERENCE STOPS HERE
|
65 |
-
#--------------------------------------------------------------------------------------------
|
66 |
-
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
emissions_data = tracker.stop_task()
|
70 |
|
71 |
-
# Calculate accuracy
|
72 |
accuracy = accuracy_score(true_labels, predictions)
|
73 |
|
74 |
-
# Prepare results dictionary
|
75 |
results = {
|
76 |
"username": username,
|
77 |
"space_url": space_url,
|
@@ -89,4 +116,4 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
89 |
}
|
90 |
}
|
91 |
|
92 |
-
return results
|
|
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
+
import torch
|
6 |
+
from transformers import AutoTokenizer, RobertaForSequenceClassification
|
7 |
+
from torch.utils.data import Dataset, DataLoader
|
8 |
|
9 |
from .utils.evaluation import TextEvaluationRequest
|
10 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
11 |
|
12 |
router = APIRouter()
|
13 |
|
14 |
+
DESCRIPTION = "RoBERTa Climate Disinformation Classifier"
|
15 |
ROUTE = "/text"
|
16 |
|
17 |
+
class FrugalDataClass(Dataset):
|
18 |
+
def __init__(self, texts, labels, tokenizer, max_len=128):
|
19 |
+
self.texts = texts
|
20 |
+
self.labels = labels
|
21 |
+
self.tokenizer = tokenizer
|
22 |
+
self.max_len = max_len
|
23 |
+
|
24 |
+
def __len__(self):
|
25 |
+
return len(self.texts)
|
26 |
+
|
27 |
+
def __getitem__(self, idx):
|
28 |
+
text = str(self.texts[idx])
|
29 |
+
label = self.labels[idx]
|
30 |
+
|
31 |
+
encodings = self.tokenizer(
|
32 |
+
text,
|
33 |
+
max_length=self.max_len,
|
34 |
+
padding='max_length',
|
35 |
+
truncation=True,
|
36 |
+
return_tensors="pt"
|
37 |
+
)
|
38 |
+
|
39 |
+
return {
|
40 |
+
'input_ids': encodings['input_ids'].flatten(),
|
41 |
+
'attention_mask': encodings['attention_mask'].flatten(),
|
42 |
+
'labels': torch.tensor(label, dtype=torch.long)
|
43 |
+
}
|
44 |
+
|
45 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained("roberta-base")
|
47 |
+
model = RobertaForSequenceClassification.from_pretrained(
|
48 |
+
"roberta-base",
|
49 |
+
num_labels=8
|
50 |
+
)
|
51 |
+
model.load_state_dict(torch.load('best_roberta_model.pth', map_location=device))
|
52 |
+
model.to(device)
|
53 |
+
model.eval()
|
54 |
+
|
55 |
+
@router.post(ROUTE, description=DESCRIPTION)
|
56 |
async def evaluate_text(request: TextEvaluationRequest):
|
57 |
"""
|
58 |
+
Evaluate text classification for climate disinformation detection using RoBERTa.
|
|
|
|
|
|
|
|
|
59 |
"""
|
|
|
60 |
username, space_url = get_space_info()
|
61 |
|
|
|
62 |
LABEL_MAPPING = {
|
63 |
"0_not_relevant": 0,
|
64 |
"1_not_happening": 1,
|
|
|
70 |
"7_fossil_fuels_needed": 7
|
71 |
}
|
72 |
|
|
|
73 |
dataset = load_dataset(request.dataset_name)
|
74 |
|
|
|
75 |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
76 |
|
|
|
77 |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
78 |
test_dataset = train_test["test"]
|
79 |
|
|
|
80 |
tracker.start()
|
81 |
tracker.start_task("inference")
|
82 |
|
83 |
+
test_texts = test_dataset["quote"]
|
|
|
|
|
|
|
|
|
|
|
84 |
true_labels = test_dataset["label"]
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
test_dataset = FrugalDataClass(test_texts, true_labels, tokenizer)
|
87 |
+
test_loader = DataLoader(test_dataset, batch_size=16, shuffle=False)
|
88 |
+
|
89 |
+
predictions = []
|
90 |
+
with torch.no_grad():
|
91 |
+
for batch in test_loader:
|
92 |
+
input_ids = batch['input_ids'].to(device)
|
93 |
+
attention_mask = batch['attention_mask'].to(device)
|
94 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
95 |
+
preds = torch.argmax(outputs.logits, dim=1).cpu().numpy()
|
96 |
+
predictions.extend(preds)
|
97 |
+
|
98 |
emissions_data = tracker.stop_task()
|
99 |
|
|
|
100 |
accuracy = accuracy_score(true_labels, predictions)
|
101 |
|
|
|
102 |
results = {
|
103 |
"username": username,
|
104 |
"space_url": space_url,
|
|
|
116 |
}
|
117 |
}
|
118 |
|
119 |
+
return results
|