0xrushi's picture
Update tasks/text.py
f40d4de verified
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import torch
from transformers import AutoTokenizer, RobertaForSequenceClassification
from torch.utils.data import Dataset, DataLoader
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
DESCRIPTION = "RoBERTa Climate Disinformation Classifier"
ROUTE = "/text"
class FrugalDataClass(Dataset):
def __init__(self, texts, labels, tokenizer, max_len=128):
self.texts = texts
self.labels = labels
self.tokenizer = tokenizer
self.max_len = max_len
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
text = str(self.texts[idx])
label = self.labels[idx]
encodings = self.tokenizer(
text,
max_length=self.max_len,
padding='max_length',
truncation=True,
return_tensors="pt"
)
return {
'input_ids': encodings['input_ids'].flatten(),
'attention_mask': encodings['attention_mask'].flatten(),
'labels': torch.tensor(label, dtype=torch.long)
}
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = AutoTokenizer.from_pretrained("roberta-base")
model = RobertaForSequenceClassification.from_pretrained(
"roberta-base",
num_labels=8
)
model.load_state_dict(torch.load('tasks/best_roberta_model.pth', map_location=device))
model.to(device)
model.eval()
@router.post(ROUTE, description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection using RoBERTa.
"""
username, space_url = get_space_info()
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
dataset = load_dataset(request.dataset_name)
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
tracker.start()
tracker.start_task("inference")
test_texts = test_dataset["quote"]
true_labels = test_dataset["label"]
test_dataset = FrugalDataClass(test_texts, true_labels, tokenizer)
test_loader = DataLoader(test_dataset, batch_size=16, shuffle=False)
predictions = []
with torch.no_grad():
for batch in test_loader:
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
outputs = model(input_ids, attention_mask=attention_mask)
preds = torch.argmax(outputs.logits, dim=1).cpu().numpy()
predictions.extend(preds)
emissions_data = tracker.stop_task()
accuracy = accuracy_score(true_labels, predictions)
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results