File size: 3,317 Bytes
bcfd9f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""
BSD 3-Clause License

Copyright (c) 2018, NVIDIA Corporation
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its
  contributors may be used to endorse or promote products derived from
  this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
import numpy as np
from scipy.io.wavfile import read
import torch


def get_mask_from_lengths(lengths, device, max_len=None):
    if not max_len:
        max_len = torch.max(lengths).item()
    ids = torch.arange(0, max_len, out=torch.cuda.LongTensor(max_len)).to(device)
    mask = (ids < lengths.to(device).unsqueeze(1)).bool()
    return mask


def load_wav_to_torch(full_path):
    sampling_rate, data = read(full_path)
    return torch.FloatTensor(data.astype(np.float32)), sampling_rate


def load_filepaths_and_text(filename, split="|"):
    with open(filename, encoding="utf-8") as f:
        filepaths_and_text = [line.strip().split(split) for line in f]
    return filepaths_and_text


def to_gpu(x):
    x = x.contiguous().cuda()
    return torch.autograd.Variable(x)


def get_sizes(data):
    _, input_lengths, _, _, output_lengths = data
    output_length_size = torch.max(output_lengths.data).item()
    input_length_size = torch.max(input_lengths.data).item()
    return input_length_size, output_length_size


def get_y(data):
    _, _, mel_padded, gate_padded, _ = data
    mel_padded = to_gpu(mel_padded).float()
    gate_padded = to_gpu(gate_padded).float()
    return mel_padded, gate_padded


def get_x(data):
    text_padded, input_lengths, mel_padded, _, output_lengths = data
    text_padded = to_gpu(text_padded).long()
    input_lengths = to_gpu(input_lengths).long()
    mel_padded = to_gpu(mel_padded).float()
    output_lengths = to_gpu(output_lengths).long()

    return text_padded, input_lengths, mel_padded, output_lengths


def process_batch(batch, model):
    input_length_size, output_length_size = get_sizes(batch)
    y = get_y(batch)
    y_pred = model(batch, mask_size=output_length_size, alignment_mask_size=input_length_size)

    return y, y_pred