Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
language:
|
4 |
+
- wo
|
5 |
+
- en
|
6 |
+
license: apache-2.0
|
7 |
+
---
|
8 |
+
|
9 |
+
# Oolel: Pioneering Open Source Wolof Language Model
|
10 |
+
|
11 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
12 |
+
|
13 |
+
|
14 |
+
## 1. Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
**Oolel** is Africa's first open-source language model designed specifically for **Wolof**, one of West Africa's major languages. Created by **Soyno**, it introduces cutting-edge language technology to Wolof speakers, making powerful language technology accessible to everyone.
|
20 |
+
|
21 |
+
Based on **Qwen 2.5** architecture, Oolel brings together cutting-edge AI advances and Wolof linguistic expertise. This pioneering work stands as a testament to Soyno's commitment to developing AI solutions by Africans, for Africa, marking a significant step toward the continent's technological sovereignty.
|
22 |
+
|
23 |
+
- **Developed by: Soynade Research (Soyno)**
|
24 |
+
- **Supported Languages:** Wolof, English, French
|
25 |
+
- **Status:** This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities.
|
26 |
+
- **Model Release Date:** Dec 04, 2024
|
27 |
+
- **License:** Apache License
|
28 |
+
- **Finetuned from model:** Qwen 2.5
|
29 |
+
|
30 |
+
## 2. Key Features and Capabilities
|
31 |
+
Oolel demonstrates proficiency in:
|
32 |
+
|
33 |
+
- Bidirectional translation between English and Wolof
|
34 |
+
- Natural text generation in Wolof
|
35 |
+
- Code generation with Wolof instructions
|
36 |
+
- Standard LLM tasks including:
|
37 |
+
- Question answering
|
38 |
+
- Summarization
|
39 |
+
- Contextual understanding
|
40 |
+
|
41 |
+
## 3. Usage
|
42 |
+
|
43 |
+
Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.
|
44 |
+
|
45 |
+
### 3.1 With Transformers
|
46 |
+
```python
|
47 |
+
|
48 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
49 |
+
import torch
|
50 |
+
|
51 |
+
device = "cuda"
|
52 |
+
|
53 |
+
model = AutoModelForCausalLM.from_pretrained(
|
54 |
+
"Soyno/Oolel-v0.1",
|
55 |
+
torch_dtype = torch.bfloat16,
|
56 |
+
device_map="auto")
|
57 |
+
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained("Soyno/Oolel-v0.1")
|
59 |
+
|
60 |
+
def generate_response(messages, max_new_tokens=1024, temperature=0.1):
|
61 |
+
text = tokenizer.apply_chat_template(
|
62 |
+
messages,
|
63 |
+
tokenize=False,
|
64 |
+
add_generation_prompt=True
|
65 |
+
)
|
66 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
67 |
+
generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=max_new_tokens, temperature=temperature)
|
68 |
+
|
69 |
+
generated_ids = [
|
70 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
|
71 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
72 |
+
return response
|
73 |
+
|
74 |
+
```
|
75 |
+
|
76 |
+
|
77 |
+
**Some tasks examples:**
|
78 |
+
|
79 |
+
1. **Translation Tasks**
|
80 |
+
|
81 |
+
```bash
|
82 |
+
messages = [
|
83 |
+
{"role": "user", "content": "Translate to Wolof: Bassirou Diomaye Faye is the new Senegalese president. He is 44 years old"}
|
84 |
+
]
|
85 |
+
print(generate_response(messages))
|
86 |
+
```
|
87 |
+
|
88 |
+
2. **Code generation**
|
89 |
+
|
90 |
+
```python
|
91 |
+
messages = [
|
92 |
+
{"role": "user", "content": "Bindal ab klaas Python buy wone ni ñuy jëfandikoo dataframe yi ci Pandas"}
|
93 |
+
]
|
94 |
+
print(generate_response(messages))
|
95 |
+
```
|
96 |
+
|
97 |
+
3. **Problem Solving**
|
98 |
+
|
99 |
+
```bash
|
100 |
+
system_prompt = "You're a Wolof AI assistant. Please always provide detailed and useful answers to the user queries"
|
101 |
+
messages = [
|
102 |
+
{"role": "system", "content": system_prompt},
|
103 |
+
{"role": "user", "content": "Ndax nga mën ma won ni ñuy resolver problème bii: Fatou dafa jënd 3 kilo ceeb, 2 kilo diw ak 5 kilo sukër. Ceeb gi wenn kilo 500 CFA la, diw gi 1200 CFA kilo bi, sukër gi 750 CFA kilo bi. Ñaata la wara fay?"}
|
104 |
+
]
|
105 |
+
from pprint import pprint
|
106 |
+
pprint(generate_response(messages))
|
107 |
+
```
|
108 |
+
|
109 |
+
|
110 |
+
4. **Text Generation** (e.g. story generation)
|
111 |
+
|
112 |
+
```python
|
113 |
+
system_prompt = "You are a skilled Wolof storyteller (Gewël) with deep knowledge of African folktales and traditions. Write engaging stories in Wolof that reflect African cultural values and wisdom."
|
114 |
+
|
115 |
+
messages = [
|
116 |
+
{"role": "system", "content": system_prompt},
|
117 |
+
{"role": "user", "content": "Bindal ab léeb ci gaynde gi lekk muus mi"}
|
118 |
+
]
|
119 |
+
print(generate_response(messages, temperature=0.9))
|
120 |
+
```
|
121 |
+
|
122 |
+
5. **Multi-turn conversations**
|
123 |
+
|
124 |
+
```bash
|
125 |
+
messages = [
|
126 |
+
{"role": "user", "content": "Wax ma clan mooy CEDEAO ? Ci lan la liggeey?"},
|
127 |
+
{"role": "assistant", "content": "CEDEAO mooy 'organisation' gu boole reew yi nekk ci pennc Afrika bi. Mu ngi sukkandiku ci wàll économie, politig, ak déggoo diggante reew yi"},
|
128 |
+
{"role": "user", "content": "ñaata reew ñoo ci bokk?"}
|
129 |
+
]
|
130 |
+
print(generate_response(messages))
|
131 |
+
```
|
132 |
+
|
133 |
+
### 3.2 VLLM
|
134 |
+
|
135 |
+
```python
|
136 |
+
from transformers import AutoTokenizer
|
137 |
+
from vllm import LLM, SamplingParams
|
138 |
+
|
139 |
+
tokenizer = AutoTokenizer.from_pretrained("Soyno/Oolel-v0.1-Instruct")
|
140 |
+
|
141 |
+
# Pass the decoding hyperparameters
|
142 |
+
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, repetition_penalty=1.05, max_tokens=512)
|
143 |
+
|
144 |
+
llm = LLM(model="Soyno/Oolel-v0.1-Instruct")
|
145 |
+
|
146 |
+
prompt = "Kan mooy Youssou Ndour ?"
|
147 |
+
messages = [
|
148 |
+
{"role": "system", "content": "You are Oolel, created by Soyno. You are a helpful assistant. Please always provide detailed and useful answers to the user queries"},
|
149 |
+
{"role": "user", "content": prompt}
|
150 |
+
]
|
151 |
+
text = tokenizer.apply_chat_template(
|
152 |
+
messages,
|
153 |
+
tokenize=False,
|
154 |
+
add_generation_prompt=True
|
155 |
+
)
|
156 |
+
|
157 |
+
outputs = llm.generate([text], sampling_params)
|
158 |
+
|
159 |
+
# Print the outputs.
|
160 |
+
for output in outputs:
|
161 |
+
prompt = output.prompt
|
162 |
+
generated_text = output.outputs[0].text
|
163 |
+
print(f"Prompt: {prompt}, Generated text: {generated_text}")
|
164 |
+
```
|
165 |
+
|
166 |
+
## 4. Bias, Risks, and Limitations
|
167 |
+
|
168 |
+
While Oolel marks a significant milestone, we acknowledge its current limitations:
|
169 |
+
|
170 |
+
- As a first version, the model's performance continues to evolve
|
171 |
+
- Training data diversity can be further expanded
|
172 |
+
- Specific domain expertise can be enhanced
|
173 |
+
|
174 |
+
Future developments will focus on:
|
175 |
+
|
176 |
+
- Enriching training data with comprehensive African historical content
|
177 |
+
- Deeper integration of cultural contexts and nuances
|
178 |
+
- Improving performance across various linguistic tasks
|
179 |
+
- Strengthening the model's ability to handle complex cultural contexts
|
180 |
+
|
181 |
+
|
182 |
+
## 5. Authors
|
183 |
+
- **Yaya SY**: NLP Researcher (Efficient Continued Pretraining)
|
184 |
+
- **Dioula DOUCOURE**: Data & NLP Engineer
|