File size: 2,102 Bytes
5f51568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [],
   "source": [
    "from safetensors.torch import load_file, save_file\n",
    "import torch"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [],
   "source": [
    "file_path = \"/Qwen2.5-1.5B-Instruct/model.safetensors\"\n",
    "tensors = load_file(file_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "model.embed_tokens.weight torch.Size([151936, 1536])\n"
     ]
    }
   ],
   "source": [
    "# 152064\n",
    "# 151642\n",
    "for name in tensors.keys():\n",
    "    if 151936 in tensors[name].shape:\n",
    "        print(name, tensors[name].shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [],
   "source": [
    "embed = \"model.embed_tokens.weight\"\n",
    "new_vocab = 152064\n",
    "source_shape = tensors[embed].shape\n",
    "target_shape = torch.Size((new_vocab, source_shape[-1]))\n",
    "\n",
    "source = tensors[embed]\n",
    "\n",
    "target = torch.zeros(target_shape, dtype=source.dtype, device=source.device)\n",
    "target[:source_shape[0], :] = source"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [],
   "source": [
    "updated_tensors = {**tensors, embed: target}\n",
    "save_file(updated_tensors, file_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}