Upload 8 files (#1)
Browse files- Upload 8 files (679e7cf3ba15898762123cf01aa66d60415c27d8)
Co-authored-by: Victor Bard <[email protected]>
- README.md +197 -3
- config.json +35 -0
- generation_config.json +6 -0
- model.safetensors.index.json +0 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +44 -0
README.md
CHANGED
@@ -1,3 +1,197 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- fp8
|
4 |
+
- vllm
|
5 |
+
license: apache-2.0
|
6 |
+
---
|
7 |
+
|
8 |
+
# Mixtral-8x7B-Instruct-v0.1-FP8
|
9 |
+
|
10 |
+
## Model Overview
|
11 |
+
- **Model Architecture:** Mixtral-8x7B-Instruct-v0.1
|
12 |
+
- **Input:** Text
|
13 |
+
- **Output:** Text
|
14 |
+
- **Model Optimizations:**
|
15 |
+
- **Weight quantization:** FP8
|
16 |
+
- **Activation quantization:** FP8
|
17 |
+
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3-7B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-7B-Instruct), this models is intended for assistant-like chat.
|
18 |
+
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
19 |
+
- **Release Date:** 6/8/2024
|
20 |
+
- **Version:** 1.0
|
21 |
+
- **License(s):** [apache-2.0](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md)
|
22 |
+
- **Model Developers:** Neural Magic
|
23 |
+
|
24 |
+
Quantized version of [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1).
|
25 |
+
It achieves an average score of 73.19 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 73.48.
|
26 |
+
|
27 |
+
### Model Optimizations
|
28 |
+
|
29 |
+
This model was obtained by quantizing the weights and activations of [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) to FP8 data type, ready for inference with vLLM >= 0.5.0.
|
30 |
+
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
|
31 |
+
|
32 |
+
Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a single linear scaling maps the FP8 representations of the quantized weights and activations.
|
33 |
+
[AutoFP8](https://github.com/neuralmagic/AutoFP8) is used for quantization with 512 sequences of UltraChat.
|
34 |
+
|
35 |
+
## Deployment
|
36 |
+
|
37 |
+
### Use with vLLM
|
38 |
+
|
39 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
40 |
+
|
41 |
+
```python
|
42 |
+
from vllm import LLM, SamplingParams
|
43 |
+
from transformers import AutoTokenizer
|
44 |
+
|
45 |
+
model_id = "neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8"
|
46 |
+
|
47 |
+
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
|
48 |
+
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
50 |
+
|
51 |
+
messages = [
|
52 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
53 |
+
{"role": "user", "content": "Who are you?"},
|
54 |
+
]
|
55 |
+
|
56 |
+
prompts = tokenizer.apply_chat_template(messages, tokenize=False)
|
57 |
+
|
58 |
+
llm = LLM(model=model_id)
|
59 |
+
|
60 |
+
outputs = llm.generate(prompts, sampling_params)
|
61 |
+
|
62 |
+
generated_text = outputs[0].outputs[0].text
|
63 |
+
print(generated_text)
|
64 |
+
```
|
65 |
+
|
66 |
+
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
67 |
+
|
68 |
+
## Creation
|
69 |
+
|
70 |
+
This model was created by applying [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py) with block_sparse_moe.gate layers kept at original precision, as presented in the code snipet below.
|
71 |
+
Although AutoFP8 was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoFP8.
|
72 |
+
|
73 |
+
```python
|
74 |
+
from datasets import load_dataset
|
75 |
+
from transformers import AutoTokenizer
|
76 |
+
|
77 |
+
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
|
78 |
+
|
79 |
+
pretrained_model_dir = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
80 |
+
quantized_model_dir = "Mixtral-8x7B-Instruct-v0.1-FP8"
|
81 |
+
|
82 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=4096)
|
83 |
+
tokenizer.pad_token = tokenizer.eos_token
|
84 |
+
|
85 |
+
ds = load_dataset("mgoin/ultrachat_2k", split="train_sft").select(range(512))
|
86 |
+
examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
|
87 |
+
examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda")
|
88 |
+
|
89 |
+
quantize_config = BaseQuantizeConfig(
|
90 |
+
quant_method="fp8",
|
91 |
+
activation_scheme="static"
|
92 |
+
ignore_patterns=["re:.*lm_head", "re:.*block_sparse_moe.gate"],
|
93 |
+
)
|
94 |
+
|
95 |
+
model = AutoFP8ForCausalLM.from_pretrained(
|
96 |
+
pretrained_model_dir, quantize_config=quantize_config
|
97 |
+
)
|
98 |
+
model.quantize(examples)
|
99 |
+
model.save_quantized(quantized_model_dir)
|
100 |
+
```
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
|
105 |
+
```
|
106 |
+
lm_eval \
|
107 |
+
--model vllm \
|
108 |
+
--model_args pretrained="neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \
|
109 |
+
--tasks openllm \
|
110 |
+
--batch_size auto
|
111 |
+
```
|
112 |
+
|
113 |
+
### Accuracy
|
114 |
+
|
115 |
+
#### Open LLM Leaderboard evaluation scores
|
116 |
+
<table>
|
117 |
+
<tr>
|
118 |
+
<td><strong>Benchmark</strong>
|
119 |
+
</td>
|
120 |
+
<td><strong>Mixtral-8x7B-Instruct-v0.1</strong>
|
121 |
+
</td>
|
122 |
+
<td><strong>Mixtral-8x7B-Instruct-v0.1-FP8(this model)</strong>
|
123 |
+
</td>
|
124 |
+
<td><strong>Recovery</strong>
|
125 |
+
</td>
|
126 |
+
</tr>
|
127 |
+
<tr>
|
128 |
+
<td>MMLU (5-shot)
|
129 |
+
</td>
|
130 |
+
<td>70.33
|
131 |
+
</td>
|
132 |
+
<td>70.00
|
133 |
+
</td>
|
134 |
+
<td>99.53%
|
135 |
+
</td>
|
136 |
+
</tr>
|
137 |
+
<tr>
|
138 |
+
<td>ARC Challenge (25-shot)
|
139 |
+
</td>
|
140 |
+
<td>71.50
|
141 |
+
</td>
|
142 |
+
<td>71.08
|
143 |
+
</td>
|
144 |
+
<td>99.41%
|
145 |
+
</td>
|
146 |
+
</tr>
|
147 |
+
<tr>
|
148 |
+
<td>GSM-8K (5-shot, strict-match)
|
149 |
+
</td>
|
150 |
+
<td>64.36
|
151 |
+
</td>
|
152 |
+
<td>64.06
|
153 |
+
</td>
|
154 |
+
<td>99.53%
|
155 |
+
</td>
|
156 |
+
</tr>
|
157 |
+
<tr>
|
158 |
+
<td>Hellaswag (10-shot)
|
159 |
+
</td>
|
160 |
+
<td>87.53
|
161 |
+
</td>
|
162 |
+
<td>87.38
|
163 |
+
</td>
|
164 |
+
<td>99.82%
|
165 |
+
</td>
|
166 |
+
</tr>
|
167 |
+
<tr>
|
168 |
+
<td>Winogrande (5-shot)
|
169 |
+
</td>
|
170 |
+
<td>82.40
|
171 |
+
</td>
|
172 |
+
<td>82.40
|
173 |
+
</td>
|
174 |
+
<td>100.0%
|
175 |
+
</td>
|
176 |
+
</tr>
|
177 |
+
<tr>
|
178 |
+
<td>TruthfulQA (0-shot)
|
179 |
+
</td>
|
180 |
+
<td>64.79
|
181 |
+
</td>
|
182 |
+
<td>64.20
|
183 |
+
</td>
|
184 |
+
<td>99.08%
|
185 |
+
</td>
|
186 |
+
</tr>
|
187 |
+
<tr>
|
188 |
+
<td><strong>Average</strong>
|
189 |
+
</td>
|
190 |
+
<td><strong>73.48</strong>
|
191 |
+
</td>
|
192 |
+
<td><strong>73.19</strong>
|
193 |
+
</td>
|
194 |
+
<td><strong>99.61%</strong>
|
195 |
+
</td>
|
196 |
+
</tr>
|
197 |
+
</table>
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
3 |
+
"architectures": [
|
4 |
+
"MixtralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mixtral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_experts_per_tok": 2,
|
17 |
+
"num_hidden_layers": 32,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"num_local_experts": 8,
|
20 |
+
"output_router_logits": false,
|
21 |
+
"quantization_config": {
|
22 |
+
"activation_scheme": "static",
|
23 |
+
"quant_method": "fp8"
|
24 |
+
},
|
25 |
+
"rms_norm_eps": 1e-05,
|
26 |
+
"rope_theta": 1000000.0,
|
27 |
+
"router_aux_loss_coef": 0.02,
|
28 |
+
"router_jitter_noise": 0.0,
|
29 |
+
"sliding_window": null,
|
30 |
+
"tie_word_embeddings": false,
|
31 |
+
"torch_dtype": "bfloat16",
|
32 |
+
"transformers_version": "4.40.0",
|
33 |
+
"use_cache": true,
|
34 |
+
"vocab_size": 32000
|
35 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.40.0"
|
6 |
+
}
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"additional_special_tokens": [],
|
32 |
+
"bos_token": "<s>",
|
33 |
+
"chat_template": "{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set loop_messages = messages %}\n{%- endif %}\n\n{{- bos_token }}\n{%- for message in loop_messages %}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}\n {{- raise_exception('After the optional system message, conversation roles must alternate user/assistant/user/assistant/...') }}\n {%- endif %}\n {%- if message['role'] == 'user' %}\n {%- if loop.first and system_message is defined %}\n {{- ' [INST] ' + system_message + '\\n\\n' + message['content'] + ' [/INST]' }}\n {%- else %}\n {{- ' [INST] ' + message['content'] + ' [/INST]' }}\n {%- endif %}\n {%- elif message['role'] == 'assistant' %}\n {{- ' ' + message['content'] + eos_token}}\n {%- else %}\n {{- raise_exception('Only user and assistant roles are supported, with the exception of an initial optional system message!') }}\n {%- endif %}\n{%- endfor %}\n",
|
34 |
+
"clean_up_tokenization_spaces": false,
|
35 |
+
"eos_token": "</s>",
|
36 |
+
"legacy": false,
|
37 |
+
"model_max_length": 1000000000000000019884624838656,
|
38 |
+
"pad_token": null,
|
39 |
+
"sp_model_kwargs": {},
|
40 |
+
"spaces_between_special_tokens": false,
|
41 |
+
"tokenizer_class": "LlamaTokenizer",
|
42 |
+
"unk_token": "<unk>",
|
43 |
+
"use_default_system_prompt": false
|
44 |
+
}
|