Upload README version en español
Browse filesVersion en español del archivo readme
- README_ES.md +262 -0
README_ES.md
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
base_model: bertin-project/bertin-roberta-base-spanish
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: bertin_base_climate_detection_spa
|
10 |
+
results: []
|
11 |
+
datasets:
|
12 |
+
- somosnlp/spa_climate_detection
|
13 |
+
language:
|
14 |
+
- es
|
15 |
+
widget:
|
16 |
+
- text: >
|
17 |
+
El uso excesivo de fertilizantes nitrogenados -un fenómeno frecuente en la
|
18 |
+
agricultura- da lugar a la producción de óxido nitroso, un potente gas de
|
19 |
+
efecto invernadero. Un uso más juicioso de los fertilizantes puede frenar
|
20 |
+
estas emisiones y reducir la producción de fertilizantes, que consume mucha
|
21 |
+
energía.
|
22 |
+
pipeline_tag: text-classification
|
23 |
+
---
|
24 |
+
|
25 |
+
|
26 |
+
# Model Card for bertin_base_climate_detection_spa_v2
|
27 |
+
|
28 |
+
<p align="center">
|
29 |
+
<img src="https://huggingface.co/somosnlp/bertin_base_climate_detection_spa/resolve/main/model_image_repo_380.jpg" alt="Model Illustration" width="500">
|
30 |
+
</p>
|
31 |
+
|
32 |
+
|
33 |
+
Este modelo es una version fine-tuning del modelo: [bertin-project/bertin-roberta-base-spanish](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) utilizando el dataset somosnlp/spa_climate_detection.
|
34 |
+
El modelo esta enfocado en la identificación de textos sobre tematicas relacionadas al cambio climatico y la sustentabilidad. Este proyecto fue basado en la versión en inglés de [climatebert/distilroberta-base-climate-detector](https://huggingface.co/climatebert/distilroberta-base-climate-detector).
|
35 |
+
|
36 |
+
La motivación del proyecto fue crear una repositorio en español sobre informacion o recursos en temas como: cambio climatico, sustentabilidad, calentamiento global, energía, etc; la idea es dar visibilidad a soluciones, ejemplos de buenas practicas ambientales o noticias que nos ayuden a combatir los efectos del cambio climatico; en cierta forma parecido a lo que el proyecto [Drawdown](https://drawdown.org/solutions/table-of-solutions) realiza pero aportando ejemplos de las soluciones o nuevas investigaciones en cada tema. Para lograr este
|
37 |
+
objetivo, consideramos que la identificacion de textos que hablen sobre dichas tematicas es el primer paso. Algunas de las aplicaciones directas son: clasificacion de papers y publicaciones cientificas, noticias, opiniones.
|
38 |
+
|
39 |
+
Futuros pasos:
|
40 |
+
- Se pretende crear un modelo avanzado que clasifique en base a sectores (token classification) los textos relacionados a cambio climatico, por ejemplo: clasificar en base a electricidad, agricultura, industria, transporte, etc.
|
41 |
+
- Publicar un dataset basado en sectores.
|
42 |
+
- Realizar un modelo Q/A que pueda brindar información relevante al usuario en la tematica de cambio climatico.
|
43 |
+
|
44 |
+
## Detalles del modelo
|
45 |
+
|
46 |
+
### Descripción del modelo
|
47 |
+
- **Desarrollado por:** [Gerardo Huerta](https://huggingface.co/Gerard-1705) [Gabriela Zuñiga](https://huggingface.co/Gabrielaz)
|
48 |
+
- **Patrocinado por:** SomosNLP, HuggingFace
|
49 |
+
- **Tipo de Modelo:** Modelo de lenguaje, tuneado en instrucciones para clasificación de texto
|
50 |
+
- **Lenguaje(s):** es-ES, es-PE
|
51 |
+
- **Licencia:** cc-by-nc-sa-4.0
|
52 |
+
- **Entrenado usando el modelo:** [bertin-project/bertin-roberta-base-spanish](https://huggingface.co/bertin-project/bertin-roberta-base-spanish)
|
53 |
+
- **Dataset utilizado:** [somosnlp/spa_climate_detection](https://huggingface.co/datasets/somosnlp/spa_climate_detection)
|
54 |
+
|
55 |
+
### Fuentes de modelos
|
56 |
+
|
57 |
+
- **Repositorio:** [somosnlp/bertin_base_climate_detection_spa](https://huggingface.co/somosnlp/bertin_base_climate_detection_spa/tree/main) <!-- Enlace al `main` del repo donde tengáis los scripts, i.e.: o del mismo repo del modelo en HuggingFace o a GitHub. -->
|
58 |
+
- **Demo:** [identificacion de textos sobre cambio climatico y sustentabilidad](https://huggingface.co/spaces/somosnlp/Identificacion_de_textos_sobre_sustentabilidad_cambio_climatico)
|
59 |
+
- **Video presentación:** [Proyecto BERTIN-ClimID](https://www.youtube.com/watch?v=sfXLUP9Ei-o)
|
60 |
+
|
61 |
+
## Usos
|
62 |
+
|
63 |
+
### Usos directos:
|
64 |
+
- Clasificación de noticias: Con este modelo se puede clasificar titulares de noticias relacionadas a las areas de cambio climatico.
|
65 |
+
- Clasificación de papers: La identificación de textos científicos que divulgan soluciones y/o efectos del cambio climatico. Para este uso se puede utilizar el abstract de cada documento para realizar la identificación.
|
66 |
+
|
67 |
+
### Usos inderectos:
|
68 |
+
- Para la creación de repositorios de información con respecto a temas climaticos.
|
69 |
+
- Este modelo puede funcionar de base para crear nuevos sistemas de clasificación de soluciones climáticas para divulgar los nuevos esfuerzos en combatir el cambio climático en los diferentes sectores.
|
70 |
+
- Creacion de nuevos datasets que aborden el tema.
|
71 |
+
|
72 |
+
### Usos fuera del ámbito:
|
73 |
+
- El uso para la clasificación de textos de fuentes no verificables o poco confiables y su divulgacion ejemplo: noticias falsas o desinformación.
|
74 |
+
|
75 |
+
## Sesgos, riesgos y limitaciones:
|
76 |
+
En este punto no se han realizados estudios concretos sobre los sesgos y limitaciones, sin embargo hacemos los siguientes apuntes en base a experiencia previa y pruebas del modelo:
|
77 |
+
- Hereda los sesgos y limitaciones del modelo base con el que fue entrenado, para mas detalles véase: [BERTIN: Efficient Pre-Training of a Spanish Language Model using Perplexity Sampling](http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6403). Sin embargo, no son tan evidentes de encontrar por el tipo de tarea en el que se esta implementando el modelo como lo es la clasificacion de texto.
|
78 |
+
- Sesgos directos como por ejemplo el mayoritario uso de lenguaje de alto nivel en el dataset debido a que se utilizan textos extraidos de noticias, documentación legal de empresas que pueden complicar la identificación de textos con lenguajes de bajo nivel (ejemplo: coloquial). Para mitigar estos sesgos, se incluyeron en el dataset opiniones diversas sobre temas de cambio climatico extraidas de fuentes como redes sociales, adicional se hizo un rebalanceo de las etiquetas.
|
79 |
+
- El dataset nos hereda otras limitaciones como por ejemplo: el modelo pierde rendimiento en textos cortos, esto es debido a que la mayoria de los textos utilizados en el dataset tienen una longitud larga de entre 200 - 500 palabras. Nuevamente se intentó mitigar estas limitaciones con la inclusión de textos cortos.
|
80 |
+
|
81 |
+
### Recomendaciones
|
82 |
+
- Como hemos mencionado, el modelo tiende a bajar el rendimiento en textos cortos, por lo que lo recomendable es establecer un criterio de selección de textos largos a los cuales se necesita identificar su temática.
|
83 |
+
|
84 |
+
## Ejemplo sencillo de como utilizar el modelo
|
85 |
+
```python
|
86 |
+
## Asumiendo tener instalados transformers, torch
|
87 |
+
from transformers import AutoModelForSequenceClassification
|
88 |
+
import torch
|
89 |
+
from transformers import AutoTokenizer
|
90 |
+
|
91 |
+
tokenizer = AutoTokenizer.from_pretrained("somosnlp/bertin_base_climate_detection_spa")
|
92 |
+
model = AutoModelForSequenceClassification.from_pretrained("somosnlp/bertin_base_climate_detection_spa")
|
93 |
+
|
94 |
+
# Traduccion del label
|
95 |
+
id2label = {0: "NEGATIVE", 1: "POSITIVE"}
|
96 |
+
label2id = {"NEGATIVE": 0, "POSITIVE": 1}
|
97 |
+
|
98 |
+
# Funcion de inferencia
|
99 |
+
def inference_fun(Texto):
|
100 |
+
inputs = tokenizer(Texto, return_tensors="pt")
|
101 |
+
with torch.no_grad():
|
102 |
+
logits = model(**inputs).logits
|
103 |
+
predicted_class_id = logits.argmax().item()
|
104 |
+
output_tag = model.config.id2label[predicted_class_id]
|
105 |
+
return output_tag
|
106 |
+
|
107 |
+
input_text = "El uso excesivo de fertilizantes nitrogenados -un fenómeno frecuente en la agricultura- da lugar a la producción de óxido nitroso, un potente gas de efecto invernadero. Un uso más juicioso de los fertilizantes puede frenar estas emisiones y reducir la producción de fertilizantes, que consume mucha energía."
|
108 |
+
|
109 |
+
print(inference_fun(input_text))
|
110 |
+
```
|
111 |
+
|
112 |
+
|
113 |
+
## Detalles del entrenamiento:
|
114 |
+
|
115 |
+
### Datos de entrenamiento:
|
116 |
+
Los datos del entrenamiento fueron obtenidos del dataset [somosnlp/spa_climate_detection](https://huggingface.co/datasets/somosnlp/spa_climate_detection).
|
117 |
+
Los datos de entrenamiento representan alrededor de un 79% de los datos totales del dataset.
|
118 |
+
|
119 |
+
Las etiquetas estan representadas de la siguiente forma:
|
120 |
+
|
121 |
+
Etiquetas 1s
|
122 |
+
|
123 |
+
1000 - datos sobre parrafos extraidos de informes empresariales sobre el tema.
|
124 |
+
|
125 |
+
600 - datos sobre opiniones diversas, en su mayorias textos cortos.
|
126 |
+
|
127 |
+
Etiquetas 0s
|
128 |
+
|
129 |
+
300 - datos sobre parrafos extraidos de informes empresariales no relacionados al tema.
|
130 |
+
|
131 |
+
500 - datos sobre noticias de temas diversos no relacionados al tema.
|
132 |
+
|
133 |
+
500 - datos sobre opiniones de temas diversos no relacionados al tema.
|
134 |
+
|
135 |
+
### Procedimiento de entrenamiento
|
136 |
+
Puedes consultar nuestro Google Colab para revisar el procedimiento de entranamiento que tomamos: [Colab Entrenamiento](https://huggingface.co/somosnlp/bertin_base_climate_detection_spa/blob/main/entrenamiento_del_modelo.ipynb)
|
137 |
+
La configuración de accelerate es la siguiente:
|
138 |
+
In which compute environment are you running?: 0
|
139 |
+
Which type of machine are you using?: No distributed training
|
140 |
+
Do you want to run your training on CPU only (even if a GPU / Apple Silicon / Ascend NPU device is available)? [yes/NO]:NO
|
141 |
+
Do you wish to optimize your script with torch dynamo?[yes/NO]:NO
|
142 |
+
Do you want to use DeepSpeed? [yes/NO]: NO
|
143 |
+
What GPU(s) (by id) should be used for training on this machine as a comma-seperated list? [all]:all
|
144 |
+
Do you wish to use FP16 or BF16 (mixed precision)?: no
|
145 |
+
|
146 |
+
### Hiperparametros de entrenamiento:
|
147 |
+
The following hyperparameters were used during training:
|
148 |
+
- learning_rate: 2e-05
|
149 |
+
- train_batch_size: 16
|
150 |
+
- eval_batch_size: 16
|
151 |
+
- seed: 42
|
152 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
153 |
+
- lr_scheduler_type: linear
|
154 |
+
- num_epochs: 2
|
155 |
+
|
156 |
+
### Speeds, Sizes, Times
|
157 |
+
El modelo fue entrenado en 2 epocas con una duración total de 14.22 minutos de entrenamiento, 'train_runtime': 853.6759.
|
158 |
+
Como dato adicional: No se utilizó precision mixta (FP16 ó BF16)
|
159 |
+
|
160 |
+
|
161 |
+
### Resultados del entrenamiento:
|
162 |
+
|
163 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
164 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
165 |
+
| No log | 1.0 | 182 | 0.1964 | 0.9551 |
|
166 |
+
| No log | 2.0 | 364 | 0.1592 | 0.9705 |
|
167 |
+
|
168 |
+
|
169 |
+
## Evaluación
|
170 |
+
|
171 |
+
### Datos de prueba, factores y metricas
|
172 |
+
|
173 |
+
#### Datos de prueba
|
174 |
+
Los datos de evaluación fueron obtenidos del dataset [somosnlp/spa_climate_detection](https://huggingface.co/datasets/somosnlp/spa_climate_detection).
|
175 |
+
Los datos de evaluación representan alrededor de un 21% de los datos totales del dataset.
|
176 |
+
|
177 |
+
Las etiquetas estan representadas de la siguiente forma:
|
178 |
+
|
179 |
+
Etiquetas 1s
|
180 |
+
|
181 |
+
320 - datos sobre parrafos extraidos de informes empresariales sobre el tema.
|
182 |
+
|
183 |
+
160 - datos sobre opiniones diversas, en su mayorias textos cortos.
|
184 |
+
|
185 |
+
Etiquetas 0s
|
186 |
+
|
187 |
+
80 - datos sobre parrafos extraidos de informes empresariales no relacionados al tema.
|
188 |
+
|
189 |
+
120 - datos sobre noticias de temas diversos no relacionados al tema.
|
190 |
+
|
191 |
+
100 - datos sobre opiniones de temas diversos no relacionados al tema.
|
192 |
+
|
193 |
+
|
194 |
+
**El modelo actual logra los siguientes resultados en el set de evaluación:**
|
195 |
+
- **Loss:** 0.1592
|
196 |
+
- **Accuracy:** 0.9705
|
197 |
+
|
198 |
+
#### Metrica utilizada:
|
199 |
+
La métrica utilizada para evaluar el modelo fue precisión.
|
200 |
+
|
201 |
+
#### Resultados:
|
202 |
+
|
203 |
+
Por favor dirigirse a la sección de "Inference" en el colab: [entrenamiento_del_modelo](https://huggingface.co/somosnlp/bertin_base_climate_detection_spa/blob/main/entrenamiento_del_modelo.ipynb)
|
204 |
+
|
205 |
+
Accuracy 0.95
|
206 |
+
Precision 0.916
|
207 |
+
Recall 0.99
|
208 |
+
F1 score 0.951
|
209 |
+
|
210 |
+
## Impacto ambiental
|
211 |
+
Utilizando la herramienta de [ML CO2 IMPACT](https://mlco2.github.io/impact/#co2eq) calculamos que el siguiente impacto ambiental debido al entrenamiento:
|
212 |
+
- **Tipo de hardware:** T4
|
213 |
+
- **Horas utilizadas (incluye pruebas e iteraciones para mejorar el modelo):** 4 horas
|
214 |
+
- **Proveedor de nube:** Google Cloud (colab)
|
215 |
+
- **Región computacional:** us-east
|
216 |
+
- **Huella de carbono emitida:** 0.1kg CO2
|
217 |
+
|
218 |
+
|
219 |
+
## Información Tecnica
|
220 |
+
|
221 |
+
#### Software
|
222 |
+
|
223 |
+
- Transformers 4.39.3
|
224 |
+
- Pytorch 2.2.1+cu121
|
225 |
+
- Datasets 2.18.0
|
226 |
+
- Tokenizers 0.15.2
|
227 |
+
|
228 |
+
#### Hardware
|
229 |
+
|
230 |
+
- GPU equivalente a T4
|
231 |
+
- Para tomarlo como referencia, el modelo se entrenó en la version gratuita de Google Colab
|
232 |
+
|
233 |
+
## Licencia:
|
234 |
+
|
235 |
+
cc-by-nc-sa-4.0 Debido a herencias de los datos utilizados en el dataset.
|
236 |
+
|
237 |
+
## Cita:
|
238 |
+
|
239 |
+
**BibTeX:**
|
240 |
+
|
241 |
+
@software{BERTIN-ClimID,
|
242 |
+
author = {Gerardo Huerta, Gabriela Zuñiga},
|
243 |
+
title = {BERTIN-ClimID: BERTIN-Base Climate-related text Identification},
|
244 |
+
month = Abril,
|
245 |
+
year = 2024,
|
246 |
+
url = {https://huggingface.co/somosnlp/bertin_base_climate_detection_spa}
|
247 |
+
}
|
248 |
+
|
249 |
+
|
250 |
+
## More Information
|
251 |
+
|
252 |
+
Este proyecto fue desarrollado durante el [Hackathon #Somos600M](https://somosnlp.org/hackathon) Organizado por SomosNLP. Agradecemos a todos los organizadores del evento y patrocinadores por el apoyo durante el desarrollo del mismo.
|
253 |
+
|
254 |
+
**Team:**
|
255 |
+
|
256 |
+
- [Gerardo Huerta](https://huggingface.co/Gerard-1705)
|
257 |
+
- [Gabriela Zuñiga](https://huggingface.co/Gabrielaz)
|
258 |
+
|
259 |
+
## Contact [optional]
|
260 |
+
|
261 | |
262 |