Suparious commited on
Commit
860e9a6
·
verified ·
1 Parent(s): c663e75

Add details to model summary

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md CHANGED
@@ -46,3 +46,91 @@ prompt_template: '<|im_start|>system
46
 
47
  # Neural Story 7B instruct 0.2
48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
  # Neural Story 7B instruct 0.2
48
 
49
+ - Model creator: [NeuralNovel](https://huggingface.co/NeuralNovel)
50
+ - Original model: [Mistral-7B-Instruct-v0.2-Neural-Story](https://huggingface.co/NeuralNovel/Mistral-7B-Instruct-v0.2-Neural-Story)
51
+
52
+ ![Neural-Story](https://i.ibb.co/JFRYk6g/OIG-27.jpg)
53
+
54
+ ## Model Summary
55
+
56
+ The **Mistral-7B-Instruct-v0.2-Neural-Story** model, developed by NeuralNovel and funded by Techmind, is a language model finetuned from Mistral-7B-Instruct-v0.2.
57
+
58
+ Designed to generate instructive and narrative text, with a specific focus on storytelling.
59
+ This fine-tune has been tailored to provide detailed and creative responses in the context of narrative and optimised for short story telling.
60
+
61
+ Based on mistralAI, with apache-2.0 license, suitable for commercial or non-commercial use.
62
+
63
+ Fine-tuned with the intention of generating creative and narrative text, making it more suitable for creative writing prompts and storytelling.
64
+
65
+ ## How to use
66
+
67
+ ### Install the necessary packages
68
+
69
+ ```bash
70
+ pip install --upgrade autoawq autoawq-kernels
71
+ ```
72
+
73
+ ### Example Python code
74
+
75
+ ```python
76
+ from awq import AutoAWQForCausalLM
77
+ from transformers import AutoTokenizer, TextStreamer
78
+
79
+ model_path = "solidrust/Neural-Story-7B-instruct-v0.2-AWQ"
80
+ system_message = "You are NeuralStory AI, incarnated as a powerful AI. You write stories."
81
+
82
+ # Load model
83
+ model = AutoAWQForCausalLM.from_quantized(model_path,
84
+ fuse_layers=True)
85
+ tokenizer = AutoTokenizer.from_pretrained(model_path,
86
+ trust_remote_code=True)
87
+ streamer = TextStreamer(tokenizer,
88
+ skip_prompt=True,
89
+ skip_special_tokens=True)
90
+
91
+ # Convert prompt to tokens
92
+ prompt_template = """\
93
+ <|im_start|>system
94
+ {system_message}<|im_end|>
95
+ <|im_start|>user
96
+ {prompt}<|im_end|>
97
+ <|im_start|>assistant"""
98
+
99
+ prompt = "You're standing on the surface of the Earth. "\
100
+ "You walk one mile south, one mile west and one mile north. "\
101
+ "You end up exactly where you started. Where are you?"
102
+
103
+ tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
104
+ return_tensors='pt').input_ids.cuda()
105
+
106
+ # Generate output
107
+ generation_output = model.generate(tokens,
108
+ streamer=streamer,
109
+ max_new_tokens=512)
110
+
111
+ ```
112
+
113
+ ### About AWQ
114
+
115
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
116
+
117
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
118
+
119
+ It is supported by:
120
+
121
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
122
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
123
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
124
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
125
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
126
+
127
+ ## Prompt template: ChatML
128
+
129
+ ```plaintext
130
+ <|im_start|>system
131
+ {system_message}<|im_end|>
132
+ <|im_start|>user
133
+ {prompt}<|im_end|>
134
+ <|im_start|>assistant
135
+ ```
136
+