Suparious commited on
Commit
1d4d46f
·
verified ·
1 Parent(s): 723e6bd

initial model card

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md CHANGED
@@ -1,3 +1,88 @@
1
  ---
 
2
  license: cc-by-sa-4.0
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: transformers
3
  license: cc-by-sa-4.0
4
+ datasets:
5
+ - mlabonne/chatml_dpo_pairs
6
+ - ResplendentAI/Synthetic_Soul_1k
7
+ language:
8
+ - en
9
  ---
10
+ # ResplendentAI/Flora-7B-DPO AWQ
11
+
12
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/626dfb8786671a29c715f8a9/vwj8qDwMChPo05DcGDg0O.jpeg)
13
+
14
+ ## Model Summary
15
+
16
+ Finetuned with this DPO dataset: https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs
17
+
18
+ ## How to use
19
+
20
+ ### Install the necessary packages
21
+
22
+ ```bash
23
+ pip install --upgrade autoawq autoawq-kernels
24
+ ```
25
+
26
+ ### Example Python code
27
+
28
+ ```python
29
+ from awq import AutoAWQForCausalLM
30
+ from transformers import AutoTokenizer, TextStreamer
31
+
32
+ model_path = "solidrust/Flora-7B-DPO-AWQ"
33
+ system_message = "You are Dolphin, a helpful AI assistant."
34
+
35
+ # Load model
36
+ model = AutoAWQForCausalLM.from_quantized(model_path,
37
+ fuse_layers=True)
38
+ tokenizer = AutoTokenizer.from_pretrained(model_path,
39
+ trust_remote_code=True)
40
+ streamer = TextStreamer(tokenizer,
41
+ skip_prompt=True,
42
+ skip_special_tokens=True)
43
+
44
+ # Convert prompt to tokens
45
+ prompt_template = """\
46
+ <|im_start|>system
47
+ {system_message}<|im_end|>
48
+ <|im_start|>user
49
+ {prompt}<|im_end|>
50
+ <|im_start|>assistant"""
51
+
52
+ prompt = "You're standing on the surface of the Earth. "\
53
+ "You walk one mile south, one mile west and one mile north. "\
54
+ "You end up exactly where you started. Where are you?"
55
+
56
+ tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
57
+ return_tensors='pt').input_ids.cuda()
58
+
59
+ # Generate output
60
+ generation_output = model.generate(tokens,
61
+ streamer=streamer,
62
+ max_new_tokens=512)
63
+
64
+ ```
65
+
66
+ ### About AWQ
67
+
68
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
69
+
70
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
71
+
72
+ It is supported by:
73
+
74
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
75
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
76
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
77
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
78
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
79
+
80
+ ## Prompt template: ChatML
81
+
82
+ ```plaintext
83
+ <|im_start|>system
84
+ {system_message}<|im_end|>
85
+ <|im_start|>user
86
+ {prompt}<|im_end|>
87
+ <|im_start|>assistant
88
+ ```