--- base_model: - karakuri-ai/karakuri-lm-32b-thinking-2501-exp - Qwen/Qwen2.5-Coder-32B-Instruct tags: - merge - mergekit - lazymergekit - karakuri-ai/karakuri-lm-32b-thinking-2501-exp - Qwen/Qwen2.5-Coder-32B-Instruct license: apache-2.0 language: - ja - en --- # Qwen2.5-Coder-32B-Instruct-karakuri-thinking-slerp Qwen2.5-Coder-32B-Instruct-karakuri-thinking-slerpは、 [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing) を使った以下のモデルのマージです: * [karakuri-ai/karakuri-lm-32b-thinking-2501-exp](https://huggingface.co/karakuri-ai/karakuri-lm-32b-thinking-2501-exp) * [Qwen/Qwen2.5-Coder-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct) ## 作成意図 日本語のReasoningモデルにコーディング能力を付与する目的で作成しました。 ## 🧩 マージ設定 ```yaml slices: - sources: - model: karakuri-ai/karakuri-lm-32b-thinking-2501-exp layer_range: [0, 64] - model: Qwen/Qwen2.5-Coder-32B-Instruct layer_range: [0, 64] merge_method: slerp base_model: karakuri-ai/karakuri-lm-32b-thinking-2501-exp parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 使い方 ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "smorce/Qwen2.5-Coder-32B-Instruct-karakuri-thinking-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```