File size: 3,438 Bytes
72c6017 268a812 f2347b1 b43aea7 72c6017 79946e5 a7e7555 79946e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
---
language:
- mr
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- robust-speech-event
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-mr
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: mozilla-foundation/common_voice_8_0
name: Common Voice 8
args: mr
metrics:
- type: wer # Required. Example: wer
value: 31.57 # Required. Example: 20.90
name: Test WER # Optional. Example: Test WER
- name: Test CER
type: cer
value: 6.93
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.494580
- Wer: 0.395909
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 200.0
- mixed_precision_training: Native AMP
### Training results
/ Step / Training Loss / Validation Loss / Wer /
|---|---|---|---|
/ 400 / 3.794000 / 3.532227 / 1.000000 /
/ 800 / 3.362400 / 3.359044 / 1.000000 /
/ 1200 / 2.293900 / 1.011279 / 0.829924 /
/ 1600 / 1.233000 / 0.502743 / 0.593662 /
/ 2000 / 0.962600 / 0.412519 / 0.496992 /
/ 2400 / 0.831800 / 0.402903 / 0.493783 /
/ 2800 / 0.737000 / 0.389773 / 0.469314 /
/ 3200 / 0.677100 / 0.373987 / 0.436021 /
/ 3600 / 0.634400 / 0.383823 / 0.432010 /
/ 4000 / 0.586000 / 0.375610 / 0.419575 /
/ 4400 / 0.561000 / 0.387891 / 0.418371 /
/ 4800 / 0.518500 / 0.386357 / 0.417569 /
/ 5200 / 0.515300 / 0.415069 / 0.430004 /
/ 5600 / 0.478100 / 0.399211 / 0.408744 /
/ 6000 / 0.468100 / 0.424542 / 0.402327 /
/ 6400 / 0.439400 / 0.430979 / 0.410750 /
/ 6800 / 0.429600 / 0.427700 / 0.409146 /
/ 7200 / 0.400300 / 0.451111 / 0.419976 /
/ 7600 / 0.395100 / 0.463446 / 0.405134 /
/ 8000 / 0.381800 / 0.454752 / 0.407942 /
/ 8400 / 0.371500 / 0.461547 / 0.404733 /
/ 8800 / 0.362500 / 0.461543 / 0.411151 /
/ 9200 / 0.338200 / 0.468299 / 0.417168 /
/ 9600 / 0.338800 / 0.480989 / 0.412355 /
/ 10000 / 0.317600 / 0.475700 / 0.410750 /
/ 10400 / 0.315100 / 0.478920 / 0.403530 /
/ 10800 / 0.296200 / 0.480600 / 0.398315 /
/ 11200 / 0.299000 / 0.477083 / 0.393502 /
/ 11600 / 0.290000 / 0.465646 / 0.393903 /
/ 12000 / 0.290900 / 0.490041 / 0.405937 /
/ 12400 / 0.275600 / 0.489354 / 0.399519 /
/ 12800 / 0.272600 / 0.494580 / 0.395909 /
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu113
- Datasets 1.18.3.dev0
- Tokenizers 0.11.0
### Eval results on Common Voice 8 "test" (WER):
| Without LM | With LM |
|---|---|
| 40.513437625350984 | 31.56839149618933 |
|