File size: 6,414 Bytes
1cd101c 08e7e0e 0677661 b003bad 08e7e0e 82e1cfd 1cd101c b09eb4e 1cd101c b09eb4e d69bd36 630fe3a 1cd101c f932655 1cd101c 08e7e0e 1cd101c 08e7e0e 1cd101c a10a98b 0f9b7c2 a86fb43 1cd101c b09eb4e a10a98b 1cd101c 08e7e0e 1cd101c b09eb4e 1cd101c 0f9b7c2 f932655 1cd101c d69bd36 08e7e0e 1cd101c b09eb4e a10a98b 1cd101c 08e7e0e a10a98b 1cd101c f932655 d69bd36 1cd101c 0f9b7c2 1cd101c 08e7e0e 1cd101c a86fb43 b09eb4e 1cd101c 08e7e0e 1cd101c 0f9b7c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
---
library_name: transformers
license: mit
datasets:
- openslr/librispeech_asr
- slprl/SpokenSwag
- slprl/sTinyStories
base_model:
- Qwen/Qwen2.5-0.5B
pipeline_tag: audio-to-audio
---
# Model Card for SLAM
This is a Speech Language Model trained for generating speech continuations over discrete [Hubert tokens](https://huggingface.co/slprl/mhubert-base-25hz).
## Model Details
### Model Description
This is a Speech Language Model, introduced in "[_Slamming_: Training a Speech Language Model on One GPU in a Day](https://arxiv.org/abs/2502.15814)", focusing on efficient training.
It was fine-tuned from [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) over a vocabulary of 500 speech tokens extracted from
the 11-th layer of [mhubert-25hz](https://huggingface.co/slprl/mhubert-base-25hz). For a stronger version of the model trained with
slightly more compute - 2*A100 for 2 days, see [slam_scaled](https://huggingface.co/slprl/slam_scaled).
The model was trained by next-token prediction over a subset of LibriSpeech, Libri-Light and a synthetic data
[sTinyStories](https://huggingface.co/datasets/slprl/sTinyStories). It was then trained with DPO over
[SpokenSwag](https://huggingface.co/datasets/slprl/SpokenSwag).
- **Developed by:** [SLP-RL](https://huggingface.co/slprl)
- **Model type:** SpeechLM
- **License:** MIT
- **Finetuned from model:** [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B)
### Model Sources
- **Repository:** [https://github.com/slp-rl/slamkit](https://github.com/slp-rl/slamkit)
- **Paper:** [https://arxiv.org/abs/2502.15814](https://arxiv.org/abs/2502.15814)
- **Demo:** [https://pages.cs.huji.ac.il/adiyoss-lab/slamming/](https://pages.cs.huji.ac.il/adiyoss-lab/slamming/)
## Uses
This is a base SpeechLM and as such can be used to generate continuations for speech segments, or as base for further tuning. See the _SlamKit_
[codebase](https://github.com/slp-rl/slamkit) for more details on usage, and checkout the [demo page](https://pages.cs.huji.ac.il/adiyoss-lab/slamming/) for some generation examples
### Out-of-Scope Use
This model was trained on curated speech datasets which contain mainly audio-books and stories, as such the outputs should not be treated as factual in any way.
## How to Get Started with the Model
We refer users to the official repository for full usage explanations - [github](https://github.com/slp-rl/slamkit).
## Training Details
We highly encourage users to read the full [paper](https://arxiv.org/abs/2502.15814), for full training details, a brief overview is provided below.
### Training Data
This model was trained on a subset of [LibriSpeech](https://huggingface.co/datasets/openslr/librispeech_asr) train,
[Libri-Light](https://ai.meta.com/tools/libri-light/) and the synthetic dataset
[sTinyStories](https://huggingface.co/datasets/slprl/sTinyStories) for the pre-training phase. It was also trained with DPO on the synthetic
dataset [SpokenSwag](https://huggingface.co/datasets/slprl/SpokenSwag).
### Training Procedure
This model was trained by next token prediction over several datasets, and then trained with DPO over [SpokenSwag](https://huggingface.co/datasets/slprl/SpokenSwag).
Please refer to the [paper]() or [code](https://github.com/slp-rl/slamkit) for the full training recipes.
#### Preprocessing
Speech tokens are extracted from the audio using [Hubert-25hz](https://huggingface.co/slprl/mhubert-base-25hz), and quantised using the
official kmeans released with the model in [textlesslib](https://github.com/facebookresearch/textlesslib/tree/main). Units are de-duplicated.
We encourage you to explore the official repository for full details - [github](https://github.com/slp-rl/slamkit).
## Evaluation
The paper provides full results, we do give here some results and also refer to the [demo page]() to listen to some samples.
| Model | Compute (GPU days) | Parameters | sBLIMP ↑ | sStoryCloze ↑ | tStoryCloze ↑ | GenPPL ↓ | Auto-BLEU ↓ |
|------------------------------------------|--------------------|------------|----------|--------------|--------------|---------|------------|
| [TWIST-1.3B](https://pages.cs.huji.ac.il/adiyoss-lab/twist/) | 160xV100 | 1B | 57.00 | 52.4 | 70.6 | 131.8 | 3.20 |
| [TWIST-7B](https://pages.cs.huji.ac.il/adiyoss-lab/twist/) | ? | 7B | 59.00 | 55.3 | 74.1 | 93.7 | 3.06 |
| [TWIST-13B](https://pages.cs.huji.ac.il/adiyoss-lab/twist/) | ? | 13B | 59.20 | 55.4 | 76.4 | - | - |
| [Scaled Optimal](https://arxiv.org/abs/2404.00685) | ? | 823M | **61.3** | **56.7** | **78.0** | - | - |
| [Predicted Optimal]((https://arxiv.org/abs/2404.00685)) | 1xA5000 | 78M | 56.85 | 54.09 | 70.49 | - | - |
| TWIST-350M (Original recipe) | 1xA5000 | 305M | 51.52 ± .19 | 53.65 ± .57 | 68.80 ± .47 | 259.2 ± 6.7 | 3.26 ± .46 |
| *Slam (-DPO) (ours)* | 1xA5000 | 358M | *56.45* ± .17 | *55.59* ± .30 | *78.01* ± .27 | *88.3* ± 1.0 | 3.47 ± .17 |
| **Slam (ours)** | 1xA5000 | 358M | **58.86** ± .20 | **58.04** ± .51 | **82.04** ± .21 | **62.8** ± 4.1 | 3.88 ± .11 |
### Compute Infrastructure
This model was trained as part of ["*Slamming*: Training a Speech Language Model on One GPU in a Day"](https://arxiv.org/abs/2502.15814), focusing on efficient training.
#### Hardware
This model was trained using **only a single Nvidia A5000 GPU**, 16 CPU cores and 24 GB of RAM for **24 hours**.
#### Software
The model was trained using the [*SlamKit*](https://github.com/slp-rl/slamkit) codebase which builds upon 🤗transformers extending it to support
easy and efficient training of Speech Language Models.
## Citation
**BibTeX:**
```
@misc{maimon2025slamming,
title={Slamming: Training a Speech Language Model on One GPU in a Day},
author={Gallil Maimon and Avishai Elmakies and Yossi Adi},
year={2025},
eprint={2502.15814},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2502.15814},
}
``` |