--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1903 - Accuracy: 0.7335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1920 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.5817 | 0.1255 | 241 | 0.6961 | 0.6601 | | 0.4524 | 1.1255 | 482 | 1.1878 | 0.6009 | | 0.5473 | 2.1255 | 723 | 1.0509 | 0.6420 | | 0.5044 | 3.1255 | 964 | 1.0045 | 0.6745 | | 0.7258 | 4.1255 | 1205 | 0.9840 | 0.6567 | | 0.3606 | 5.1255 | 1446 | 1.0898 | 0.7377 | | 0.2423 | 6.1255 | 1687 | 1.0520 | 0.7460 | | 0.3488 | 7.1214 | 1920 | 1.1903 | 0.7335 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3