File size: 4,938 Bytes
ce29006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
library_name: transformers
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- axolotl
- generated_from_trainer
model-index:
- name: Mistral-7B-v0.1-q-sparse-fineweb-edu-table2-re
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.5.2`
```yaml
base_model: mistralai/Mistral-7B-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
tokenizer_use_fast: false
resize_token_embeddings_to_32x: false

flash_attention: true
xformers_attention:

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: skymizer/Mistral-7B-v0.1-base-tokenized-fineweb-edu-45B-4096
    train_on_split: train
    type: completion

test_datasets:
  - path: skymizer/Mistral-7B-v0.1-base-tokenized-fineweb-edu-test-4K
    split: test
    type: completion

is_preprocess: true
skip_prepare_dataset: true

dataset_prepared_path:

hf_use_auth_token: true
output_dir: /mnt/home/model-team/models/Mistral-7B-v0.1-q-sparse-fineweb-edu-table2-re
resume_from_checkpoint:
auto_resume_from_checkpoints: true

sequence_len: 4096
sample_packing: true
sample_packing_group_size: 100000
sample_packing_bin_size: 200
pad_to_sequence_len: true

eval_sample_packing: false
# eval_causal_lm_metrics: ["perplexity"]

wandb_project: "sparse-tuning-cpt"
wandb_entity:
wandb_watch:
wandb_name: "Mistral-7B-v0.1-q-sparse-fineweb-edu-table2-re"
wandb_log_model:

# global batch size = 2 * 8 * 8 GPUs * 8 Nodes * 4096 = 4M
gradient_accumulation_steps: 2
micro_batch_size: 8
eval_batch_size: 1
max_steps: 10000
optimizer: adamw_torch
learning_rate: 0.00005
lr_scheduler: cosine
cosine_min_lr_ratio: 0.2 
weight_decay: 0.01
adam_beta1: 0.9
adam_beta2: 0.95
adam_eps: 0.000001
max_grad_norm: 2.0

train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false

hub_model_id: "skymizer/Mistral-7B-v0.1-q-sparse-fineweb-edu-table2-re"

save_strategy: "steps"
save_steps: 500

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
local_rank:
logging_steps: 1

warmup_steps: 375
eval_steps: 500
eval_table_size:
debug:
deepspeed: /root/train/axolotl/deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
seed: 42

```

</details><br>

# Mistral-7B-v0.1-q-sparse-fineweb-edu-table2-re

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9784

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 64
- gradient_accumulation_steps: 2
- total_train_batch_size: 1024
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 375
- training_steps: 10000

### Training results

| Training Loss | Epoch  | Step  | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 11.1526       | 0.0001 | 1     | 11.1178         |
| 3.9513        | 0.0408 | 500   | 3.7699          |
| 3.4469        | 0.0817 | 1000  | 3.2772          |
| 3.1993        | 0.1225 | 1500  | 3.0024          |
| 2.8081        | 0.1633 | 2000  | 2.7218          |
| 2.5217        | 0.2042 | 2500  | 2.4860          |
| 2.3993        | 0.2450 | 3000  | 2.3570          |
| 2.2919        | 0.2858 | 3500  | 2.2761          |
| 2.2379        | 0.3267 | 4000  | 2.2180          |
| 2.2047        | 0.3675 | 4500  | 2.1721          |
| 2.1553        | 0.4083 | 5000  | 2.1367          |
| 2.1279        | 0.4491 | 5500  | 2.1066          |
| 2.0689        | 0.4900 | 6000  | 2.0822          |
| 2.0702        | 0.5308 | 6500  | 2.0608          |
| 2.0611        | 0.5716 | 7000  | 2.0425          |
| 2.0242        | 0.6125 | 7500  | 2.0264          |
| 2.0449        | 0.6533 | 8000  | 2.0140          |
| 2.0245        | 0.6941 | 8500  | 2.0025          |
| 2.0107        | 0.7350 | 9000  | 1.9933          |
| 1.9995        | 0.7758 | 9500  | 1.9851          |
| 1.9995        | 0.8166 | 10000 | 1.9784          |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3