sirovub commited on
Commit
63b90a2
·
verified ·
1 Parent(s): c418fad
Files changed (1) hide show
  1. README.md +119 -0
README.md ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-nd-3.0
3
+ ---
4
+
5
+ BPE Fix applied https://github.com/ggerganov/llama.cpp/pull/6920
6
+
7
+ Source: https://huggingface.co/maldv/SFR-Iterative-DPO-LLaMA-3-8B-R
8
+
9
+ # SFR-Iterative-DPO-Llama-3-8B-R
10
+
11
+ ## Introduction
12
+ We release a state-of-the-art instruct model of its class, **SFR-Iterative-DPO-LLaMA-3-8B-R**.
13
+ On all three widely-used instruct model benchmarks: **Alpaca-Eval-V2**, **MT-Bench**, **Chat-Arena-Hard**, our model outperforms all models of similar size (e.g., LLaMA-3-8B-it), most large open-sourced models (e.g., Mixtral-8x7B-it),
14
+ and strong proprietary models (e.g., GPT-3.5-turbo-0613). The model is trained with open-sourced datasets without any additional human-/GPT4-labeling.
15
+
16
+ ## Model Releases
17
+ - [SFT model](https://huggingface.co/Salesforce/SFR-SFT-LLaMA-3-8B-R)
18
+ - [Reward model](https://huggingface.co/Salesforce/SFR-RM-LLaMA-3-8B-R)
19
+ - [RLHF model](https://huggingface.co/Salesforce/SFR-Iterative-DPO-LLaMA-3-8B-R)
20
+
21
+
22
+ ## Training methods
23
+ We have developed a simple and efficient online RLHF recipe for LLM instruct training. Our recipe is DPO-based and thus much cheaper and simpler to train and tune compared to PPO-based approaches.
24
+ Unlike widely-used offline DPO, the online component of our approach effectively mitigates distribution shifts during policy optimization.
25
+ For a detailed exposition, please refer to our accompanying technical report.
26
+
27
+
28
+ ## Chat Benchmarks
29
+
30
+ | **Model** | **Size** | **Method** | **LC Alpaca-Eval-V2** | **MT-Bench** | **Chat-Arena-Hard** |
31
+ |-------------------------|----------|-------------------|-----------------------|--------------|---------------------|
32
+ | **Small Open-Sourced Models** | | | | | |
33
+ | Gemma-7B-it | 7B | SFT | 10.4 | 6.38 | 7.5 |
34
+ | Zephyr-7B-beta | 7B | Vanilla DPO | 13.1 | 7.34 | - |
35
+ | Mistral-7B-v0.2-it | 7B | SFT | 17.1 | 7.51 | 12.6 |
36
+ | Open-Chat-0106 | 7B | SFT | 15.6 | 7.8 | - |
37
+ | Starling-7B-beta | 7B | PPO | 25.8 | 8.12 | 23.0 |
38
+ | LLaMA-3-8B-it | 8B | RS+DPO+PPO | 22.9 | 8.16 | 20.6 |
39
+ | **Ours** | | | | | |
40
+ | Ours (SFT baseline) | 8B | SFT | 10.2 | 7.69 | 5.6 |
41
+ | Ours (DPO baseline) | 8B | Vanilla DPO | 22.5 | 8.17 | 22.4 |
42
+ | Ours (Online RLHF) | 8B | Iterative DPO | **37.2** | **8.46** | **29.1** |
43
+ | **Large Open-Sourced Models** | | | | | |
44
+ | Vicuna-33b-v1.3 | 33B | SFT | 17.6 | 7.12 | 8.6 |
45
+ | Yi-34B-Chat | 34B | SFT | 27.2 | - | 23.1 |
46
+ | Mixtral-8x7B-it | 45B* | SFT | 23.7 | 8.30 | 23.4 |
47
+ | Tulu-2-DPO-70B | 70B | Vanilla DPO | 21.2 | 7.89 | 15.0 |
48
+ | LLaMA-3-70B-it | 70B | RS+DPO+PPO | 34.4 | 8.95 | 41.1 |
49
+ | Mixtral-8x22B-it | 141B* | SFT | 30.9 | 8.66 | 36.4 |
50
+ | **Proprietary Models** | | | | | |
51
+ | GPT-3.5-turbo-1106 | - | - | 19.3 | 8.35 | 18.9 |
52
+ | GPT-3.5-turbo-0613 | - | - | 22.7 | 8.39 | 24.8 |
53
+ | GPT-4-0613 | - | - | 30.2 | 9.18 | 37.9 |
54
+ | Claude-3-Opus | - | - | 40.5 | 9.00 | 60.4 |
55
+ | GPT-4 Turbo (04/09) | - | - | 55.0 | - | 82.6 |
56
+
57
+
58
+ ## Academic Benchmarks
59
+
60
+ | **Model** | **Size** | **Method** | **GSM-8K** | **MMLU** | **HumanEval** | **TruthfulQA** | **ARC** | **MBPP** |
61
+ |----------------------------|----------|-----------------|------------|----------|---------------|----------------|---------|----------|
62
+ | LLaMA-3-8B-it | 8B | RS+DPO+PPO | 79.6 | 66.0 | 61.6 | 43.9 | 59.5 | 61.1 |
63
+ | Ours (SFT baseline) | 8B | SFT | 74.2 | 64.7 | 65.2 | 53.4 | 61.4 | 62.3 |
64
+ | Ours (DPO baseline) | 8B | Vanilla DPO | 79.8 | 64.5 | 63.4 | 61.8 | 65.2 | 60.3 |
65
+ | Ours (Iterative RLHF) | 8B | Iterative DPO | 80.7 | 65.3 | 64.6 | 60.4 | 64.3 | 60.8 |
66
+
67
+
68
+ ## Usage
69
+ ```python
70
+ from transformers import AutoModelForCausalLM, AutoTokenizer
71
+
72
+ device = "cuda"
73
+
74
+ model = AutoModelForCausalLM.from_pretrained("Salesforce/SFR-Iterative-DPO-LLaMA-3-8B-R")
75
+ tokenizer = AutoTokenizer.from_pretrained("Salesforce/SFR-Iterative-DPO-LLaMA-3-8B-R")
76
+
77
+ messages = [
78
+ {"role": "user", "content": "I'm trying to teach myself to have nicer handwriting. Can you help?"},
79
+ ]
80
+
81
+ model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt")
82
+
83
+ model_inputs = model_inputs.to(device)
84
+ model.to(device)
85
+
86
+ output_tokens = model.generate(model_inputs, max_new_tokens=1024, do_sample=True)
87
+ model_outputs = tokenizer.batch_decode(output_tokens)
88
+ print(model_outputs[0])
89
+ ```
90
+
91
+
92
+ ## Limitations
93
+ SFR-Iterative-DPO-LLaMA-3-8B-R is a research model developed as part of our RLHF initiative at Salesforce.
94
+ While safety and ethical considerations are integral to our alignment process,
95
+ there remains the possibility that the model could generate offensive or unethical content, particularly under adversarial conditions.
96
+ We are committed to continuous improvement in our models to minimize such risks and encourage responsible usage.
97
+
98
+ ## Citation
99
+ Please cite our papers if you find our models are useful.
100
+
101
+ ```bibtex
102
+ @misc{dong2024rlhf,
103
+ title={RLHF Workflow: From Reward Modeling to Online RLHF},
104
+ author={Hanze Dong and Wei Xiong and Bo Pang and Haoxiang Wang and Han Zhao and Yingbo Zhou and Nan Jiang and Doyen Sahoo and Caiming Xiong and Tong Zhang},
105
+ year={2024},
106
+ eprint={2405.07863},
107
+ archivePrefix={arXiv},
108
+ primaryClass={cs.LG}
109
+ }
110
+
111
+ @misc{xiong2024iterative,
112
+ title={Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint},
113
+ author={Wei Xiong and Hanze Dong and Chenlu Ye and Ziqi Wang and Han Zhong and Heng Ji and Nan Jiang and Tong Zhang},
114
+ year={2024},
115
+ eprint={2312.11456},
116
+ archivePrefix={arXiv},
117
+ primaryClass={cs.LG}
118
+ }
119
+ ```