File size: 1,290 Bytes
9ddcc0f
 
 
 
 
 
 
 
 
 
 
0805789
5021f66
0805789
eb0d06c
5021f66
0805789
5021f66
0805789
5021f66
0805789
5021f66
 
 
 
 
 
 
 
 
0805789
5021f66
 
eb0d06c
 
 
 
 
 
 
 
 
5021f66
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
---
base_model: Qwen/Qwen2.5-32B-Instruct
library_name: transformers
model_name: step-conditional-control
tags:
- generated_from_trainer
- trl
- sft
license: apache-2.0
---

# Model Summary

- **Repository:** [simplescaling/s1](https://github.com/simplescaling/s1)
- **Paper:** https://arxiv.org/abs/2501.19393

# Use

This is the token-conditional control model for our paper. You can evaluate using the information [here](https://github.com/simplescaling/s1?tab=readme-ov-file#evaluation).

# Training information

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/hashimoto-group/o1/runs/xaantfal) 

- TRL: 0.13.0
- Transformers: 4.48.0
- Pytorch: 2.3.1
- Datasets: 3.0.1
- Tokenizers: 0.21.0

# Citation

```bibtex
@misc{muennighoff2025s1simpletesttimescaling,
      title={s1: Simple test-time scaling}, 
      author={Niklas Muennighoff and Zitong Yang and Weijia Shi and Xiang Lisa Li and Li Fei-Fei and Hannaneh Hajishirzi and Luke Zettlemoyer and Percy Liang and Emmanuel Candès and Tatsunori Hashimoto},
      year={2025},
      eprint={2501.19393},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2501.19393}, 
}
```