simone-papicchio commited on
Commit
eac8cc9
·
verified ·
1 Parent(s): 554956e

Commit folder

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,13 +1,27 @@
1
  ---
2
- license: apache-2.0
3
- base_model:
4
- - Qwen/Qwen2.5-Coder-7B-Instruct
 
 
 
 
 
 
5
  ---
6
 
7
- ## Model Information
 
8
  This model is the reasoning model for Text2SQL task introduced in [Think2SQL: Reinforce LLM Reasoning Capabilities for Text2SQL](https://arxiv.org/abs/2504.15077)
9
 
10
- ## Intended use
 
 
 
 
 
 
 
11
  The best model performance are given with its System and User prompt.
12
  The model is intended to use with three input: question, evidence and the database schema.
13
 
@@ -56,9 +70,24 @@ outputs = pipeline(
56
  print(outputs[0]["generated_text"][-1])
57
  ```
58
 
 
 
 
59
 
60
- ## Citation
61
- ```bitex
 
 
 
 
 
 
 
 
 
 
 
 
62
  @misc{papicchio2025think2sqlreinforcellmreasoning,
63
  title={Think2SQL: Reinforce LLM Reasoning Capabilities for Text2SQL},
64
  author={Simone Papicchio and Simone Rossi and Luca Cagliero and Paolo Papotti},
@@ -70,3 +99,12 @@ print(outputs[0]["generated_text"][-1])
70
  }
71
  ```
72
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: Qwen/Qwen2.5-Coder-7B-Instruct
3
+ datasets: simone-papicchio/bird
4
+ library_name: transformers
5
+ tags:
6
+ - generated_from_trainer
7
+ - open-r1
8
+ - Text2SQL
9
+ - Reasoning
10
+ licence: apache-2.0
11
  ---
12
 
13
+ # Model Information
14
+
15
  This model is the reasoning model for Text2SQL task introduced in [Think2SQL: Reinforce LLM Reasoning Capabilities for Text2SQL](https://arxiv.org/abs/2504.15077)
16
 
17
+
18
+ This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the [simone-papicchio/bird](https://huggingface.co/datasets/simone-papicchio/bird) dataset.
19
+ It has been trained using [TRL](https://github.com/huggingface/trl).
20
+
21
+
22
+
23
+ ## Quick start
24
+
25
  The best model performance are given with its System and User prompt.
26
  The model is intended to use with three input: question, evidence and the database schema.
27
 
 
70
  print(outputs[0]["generated_text"][-1])
71
  ```
72
 
73
+ ## Training procedure
74
+
75
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/spapicchio-politecnico-di-torino/deep-thinking/runs/d93m41pq)
76
 
77
+
78
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
79
+
80
+ ### Framework versions
81
+
82
+ - TRL: 0.17.0.dev0
83
+ - Transformers: 4.51.0
84
+ - Pytorch: 2.5.1
85
+ - Datasets: 3.5.0
86
+ - Tokenizers: 0.21.1
87
+
88
+ ## Citations
89
+
90
+ ```bibtex
91
  @misc{papicchio2025think2sqlreinforcellmreasoning,
92
  title={Think2SQL: Reinforce LLM Reasoning Capabilities for Text2SQL},
93
  author={Simone Papicchio and Simone Rossi and Luca Cagliero and Paolo Papotti},
 
99
  }
100
  ```
101
 
102
+ ```bibtex
103
+ @inproceedings{papicchio2023qatch,
104
+ title={QATCH: benchmarking SQL-centric tasks with table representation learning models on your data},
105
+ author={Papicchio, Simone and Papotti, Paolo and Cagliero, Luca},
106
+ booktitle={Proceedings of the 37th International Conference on Neural Information Processing Systems},
107
+ pages={30898--30917},
108
+ year={2023}
109
+ }
110
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_configurations.yaml ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model_args:
2
+ attn_implementation: flash_attention_2
3
+ bnb_4bit_quant_type: nf4
4
+ load_in_4bit: false
5
+ load_in_8bit: false
6
+ lora_alpha: 32
7
+ lora_dropout: 0.05
8
+ lora_modules_to_save: null
9
+ lora_r: 16
10
+ lora_target_modules: null
11
+ lora_task_type: CAUSAL_LM
12
+ model_name_or_path: Qwen/Qwen2.5-Coder-7B-Instruct
13
+ model_revision: main
14
+ torch_dtype: bfloat16
15
+ trust_remote_code: false
16
+ use_bnb_nested_quant: false
17
+ use_dora: false
18
+ use_peft: false
19
+ use_rslora: false
20
+ script_args:
21
+ cosine_max_len: 1000
22
+ cosine_max_value_correct: 1.0
23
+ cosine_max_value_wrong: -0.5
24
+ cosine_min_value_correct: 0.5
25
+ cosine_min_value_wrong: 0.0
26
+ dataset_config: null
27
+ dataset_name: simone-papicchio/bird
28
+ dataset_test_split: test
29
+ dataset_train_split: train
30
+ gradient_checkpointing_use_reentrant: false
31
+ ignore_bias_buffers: false
32
+ reward_funcs:
33
+ - qatch_metrics
34
+ - format
35
+ - tag_count
36
+ training_args:
37
+ _n_gpu: 1
38
+ accelerator_config:
39
+ dispatch_batches: null
40
+ even_batches: true
41
+ gradient_accumulation_kwargs: null
42
+ non_blocking: false
43
+ split_batches: false
44
+ use_configured_state: false
45
+ use_seedable_sampler: true
46
+ adafactor: false
47
+ adam_beta1: 0.9
48
+ adam_beta2: 0.999
49
+ adam_epsilon: 1.0e-08
50
+ add_system_prompt: true
51
+ add_validation: false
52
+ auto_find_batch_size: false
53
+ average_tokens_across_devices: false
54
+ base_db_path: data/bird_train/train_databases
55
+ batch_eval_metrics: false
56
+ benchmarks: []
57
+ beta: 0.04
58
+ bf16: true
59
+ bf16_full_eval: false
60
+ cache_implementation: null
61
+ cached_file_path: /workspaces/deep_thinking/cache_target_sql2execution_BIRD_train.pkl
62
+ callbacks: {}
63
+ chat_template: null
64
+ data_seed: null
65
+ dataloader_drop_last: false
66
+ dataloader_num_workers: 0
67
+ dataloader_persistent_workers: false
68
+ dataloader_pin_memory: true
69
+ dataloader_prefetch_factor: null
70
+ dataset_test_split_name: validation
71
+ ddp_backend: null
72
+ ddp_broadcast_buffers: null
73
+ ddp_bucket_cap_mb: null
74
+ ddp_find_unused_parameters: null
75
+ ddp_timeout: 1800
76
+ debug: []
77
+ deepspeed: null
78
+ disable_tqdm: false
79
+ do_eval: false
80
+ do_predict: false
81
+ do_train: false
82
+ ds3_gather_for_generation: true
83
+ epsilon: 0.2
84
+ epsilon_high: null
85
+ eval_accumulation_steps: null
86
+ eval_delay: 0
87
+ eval_do_concat_batches: true
88
+ eval_on_start: false
89
+ eval_steps: null
90
+ eval_strategy: !!python/object/apply:transformers.trainer_utils.IntervalStrategy
91
+ - 'no'
92
+ eval_use_gather_object: false
93
+ fp16: false
94
+ fp16_backend: auto
95
+ fp16_full_eval: false
96
+ fp16_opt_level: O1
97
+ fsdp: []
98
+ fsdp_config:
99
+ min_num_params: 0
100
+ xla: false
101
+ xla_fsdp_grad_ckpt: false
102
+ xla_fsdp_v2: false
103
+ fsdp_min_num_params: 0
104
+ fsdp_transformer_layer_cls_to_wrap: null
105
+ full_determinism: false
106
+ gradient_accumulation_steps: 16
107
+ gradient_checkpointing: true
108
+ gradient_checkpointing_kwargs:
109
+ use_reentrant: false
110
+ greater_is_better: false
111
+ group_by_length: false
112
+ half_precision_backend: auto
113
+ hub_always_push: false
114
+ hub_model_id: Qwen2.5-1.5B-Open-R1-GRPO
115
+ hub_model_revision: main
116
+ hub_private_repo: null
117
+ hub_strategy: !!python/object/apply:transformers.trainer_utils.HubStrategy
118
+ - every_save
119
+ hub_token: null
120
+ ignore_data_skip: false
121
+ include_for_metrics: []
122
+ include_inputs_for_metrics: false
123
+ include_num_input_tokens_seen: false
124
+ include_tokens_per_second: false
125
+ jit_mode_eval: false
126
+ label_names: null
127
+ label_smoothing_factor: 0.0
128
+ learning_rate: 1.0e-06
129
+ length_column_name: length
130
+ load_best_model_at_end: false
131
+ local_rank: 0
132
+ log_completions: true
133
+ log_level: info
134
+ log_level_replica: warning
135
+ log_on_each_node: true
136
+ logging_dir: ./.tensorboard_logging/f5655cd2/
137
+ logging_first_step: true
138
+ logging_nan_inf_filter: true
139
+ logging_steps: 5
140
+ logging_strategy: !!python/object/apply:transformers.trainer_utils.IntervalStrategy
141
+ - steps
142
+ lr_scheduler_kwargs: {}
143
+ lr_scheduler_type: !!python/object/apply:transformers.trainer_utils.SchedulerType
144
+ - constant_with_warmup
145
+ max_completion_length: 4096
146
+ max_grad_norm: 0.2
147
+ max_prompt_length: 2048
148
+ max_steps: -1
149
+ metric_for_best_model: loss
150
+ min_p: null
151
+ model_init_kwargs: '{''revision'': ''main'', ''trust_remote_code'': False, ''attn_implementation'':
152
+ ''flash_attention_2'', ''torch_dtype'': torch.bfloat16, ''use_cache'': False}'
153
+ mp_parameters: ''
154
+ neftune_noise_alpha: null
155
+ no_cuda: false
156
+ num_completions_to_print: 1
157
+ num_generations: 16
158
+ num_iterations: 1
159
+ num_train_epochs: 1.0
160
+ optim: !!python/object/apply:transformers.training_args.OptimizerNames
161
+ - adamw_8bit
162
+ optim_args: null
163
+ optim_target_modules: null
164
+ output_dir: base_models/grpo/Qwen/Qwen2.5-Coder-7B-Instruct/bs_256_ml_4096_gen_16_f5655cd2_RL
165
+ overwrite_hub_revision: false
166
+ overwrite_output_dir: false
167
+ past_index: -1
168
+ per_device_eval_batch_size: 8
169
+ per_device_train_batch_size: 8
170
+ per_gpu_eval_batch_size: null
171
+ per_gpu_train_batch_size: null
172
+ prediction_loss_only: false
173
+ prompt_name: text2sql_model_grpo
174
+ push_to_hub: false
175
+ push_to_hub_model_id: null
176
+ push_to_hub_organization: null
177
+ push_to_hub_revision: false
178
+ push_to_hub_token: null
179
+ ray_scope: last
180
+ ref_model_mixup_alpha: 0.6
181
+ ref_model_sync_steps: 512
182
+ remove_unused_columns: false
183
+ repetition_penalty: 1.0
184
+ report_to:
185
+ - tensorboard
186
+ - wandb
187
+ restore_callback_states_from_checkpoint: false
188
+ resume_from_checkpoint: 'True'
189
+ reward_weights:
190
+ - 0.85
191
+ - 0.1
192
+ - 0.05
193
+ run_name: exp-9-7B-QATCH
194
+ save_on_each_node: false
195
+ save_only_model: false
196
+ save_safetensors: true
197
+ save_steps: 0.1
198
+ save_strategy: !!python/object/apply:transformers.trainer_utils.SaveStrategy
199
+ - steps
200
+ save_total_limit: 3
201
+ scale_rewards: true
202
+ seed: 42
203
+ skip_memory_metrics: true
204
+ stratified_by_complexity: false
205
+ sync_ref_model: false
206
+ temperature: 0.7
207
+ tf32: null
208
+ top_k: 50
209
+ top_p: 1.0
210
+ torch_compile: false
211
+ torch_compile_backend: null
212
+ torch_compile_mode: null
213
+ torch_empty_cache_steps: null
214
+ torchdynamo: null
215
+ tp_size: 0
216
+ tpu_metrics_debug: false
217
+ tpu_num_cores: null
218
+ use_cpu: false
219
+ use_ipex: false
220
+ use_legacy_prediction_loop: false
221
+ use_liger_kernel: false
222
+ use_liger_loss: false
223
+ use_mps_device: false
224
+ use_vllm: true
225
+ validation_split: 0.2
226
+ vllm_device: auto
227
+ vllm_dtype: bfloat16
228
+ vllm_enable_prefix_caching: null
229
+ vllm_gpu_memory_utilization: 0.7
230
+ vllm_guided_decoding_regex: null
231
+ vllm_max_model_len: null
232
+ vllm_server_host: 127.0.0.1
233
+ vllm_server_port: 24879
234
+ vllm_server_timeout: 120.0
235
+ wandb_log_unique_prompts: true
236
+ warmup_ratio: 0.1
237
+ warmup_steps: 0
238
+ weight_decay: 0.0
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.0013445673257480432,
4
+ "train_runtime": 158207.651,
5
+ "train_samples": 3,
6
+ "train_samples_per_second": 0.057,
7
+ "train_steps_per_second": 0.004
8
+ }
dataset_examples.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Training dataset length: 9074
2
+ Training Example 0:
3
+ {'db_id': 'movie_platform', 'question': 'Name movie titles released in year 1945. Sort the listing by the descending order of movie popularity.', 'evidence': 'released in the year 1945 refers to movie_release_year = 1945;', 'target_sql': 'SELECT movie_title FROM movies WHERE movie_release_year = 1945 ORDER BY movie_popularity DESC LIMIT 1', 'db_schema_T': 'CREATE TABLE "movies"\n(\n movie_id INTEGER not null\n primary key,\n movie_title TEXT,\n movie_release_year INTEGER,\n movie_url TEXT,\n movie_title_language TEXT,\n movie_popularity INTEGER,\n movie_image_url TEXT,\n director_id TEXT,\n director_name TEXT,\n director_url TEXT\n)', 'db_schema': 'CREATE TABLE "lists"\n(\n user_id INTEGER\n references lists_users (user_id),\n list_id INTEGER not null\n primary key,\n list_title TEXT,\n list_movie_number INTEGER,\n list_update_timestamp_utc TEXT,\n list_creation_timestamp_utc TEXT,\n list_followers INTEGER,\n list_url TEXT,\n list_comments INTEGER,\n list_description TEXT,\n list_cover_image_url TEXT,\n list_first_image_url TEXT,\n list_second_image_url TEXT,\n list_third_image_url TEXT\n)\nCREATE TABLE "movies"\n(\n movie_id INTEGER not null\n primary key,\n movie_title TEXT,\n movie_release_year INTEGER,\n movie_url TEXT,\n movie_title_language TEXT,\n movie_popularity INTEGER,\n movie_image_url TEXT,\n director_id TEXT,\n director_name TEXT,\n director_url TEXT\n)\nCREATE TABLE "ratings_users"\n(\n user_id INTEGER\n references lists_users (user_id),\n rating_date_utc TEXT,\n user_trialist INTEGER,\n user_subscriber INTEGER,\n user_avatar_image_url TEXT,\n user_cover_image_url TEXT,\n user_eligible_for_trial INTEGER,\n user_has_payment_method INTEGER\n)\nCREATE TABLE lists_users\n(\n user_id INTEGER not null ,\n list_id INTEGER not null ,\n list_update_date_utc TEXT,\n list_creation_date_utc TEXT,\n user_trialist INTEGER,\n user_subscriber INTEGER,\n user_avatar_image_url TEXT,\n user_cover_image_url TEXT,\n user_eligible_for_trial TEXT,\n user_has_payment_method TEXT,\n primary key (user_id, list_id),\n foreign key (list_id) references lists(list_id),\n foreign key (user_id) references lists(user_id)\n)\nCREATE TABLE ratings\n(\n movie_id INTEGER,\n rating_id INTEGER,\n rating_url TEXT,\n rating_score INTEGER,\n rating_timestamp_utc TEXT,\n critic TEXT,\n critic_likes INTEGER,\n critic_comments INTEGER,\n user_id INTEGER,\n user_trialist INTEGER,\n user_subscriber INTEGER,\n user_eligible_for_trial INTEGER,\n user_has_payment_method INTEGER,\n foreign key (movie_id) references movies(movie_id),\n foreign key (user_id) references lists_users(user_id),\n foreign key (rating_id) references ratings(rating_id),\n foreign key (user_id) references ratings_users(user_id)\n)', 'difficulty': 'na', 'question_id': 0, '__index_level_0__': 0, 'db_schema_TC': 'CREATE TABLE `movies`\n(\n\n movie_title TEXT, \n movie_release_year INTEGER, \n movie_title_language TEXT, \n movie_popularity INTEGER\n)', 'prompt': [{'content': 'You are a helpful AI Assistant that provides well-reasoned and detailed responses. You first think about the reasoning process as an internal monologue and then provide the user with the answer. Respond in the following format: <think>\n...\n</think>\n<answer>\n...\n</answer>', 'role': 'system'}, {'content': 'Answer the following question with the SQL code. Use the piece of evidence and base your answer on the database schema. Given the question, the evidence and the database schema, return in the <answer> tags only the SQL script that addresses the question.\nQuestion:\nName movie titles released in year 1945. Sort the listing by the descending order of movie popularity.\n\nEvidence:\nreleased in the year 1945 refers to movie_release_year = 1945;\n\nDatabase Schema:\nCREATE TABLE "movies"\n(\n movie_id INTEGER not null\n primary key,\n movie_title TEXT,\n movie_release_year INTEGER,\n movie_url TEXT,\n movie_title_language TEXT,\n movie_popularity INTEGER,\n movie_image_url TEXT,\n director_id TEXT,\n director_name TEXT,\n director_url TEXT\n)\n\nReturn only the SQL script enclosed in <answer> tags.', 'role': 'user'}]}
4
+ --------------------------------------------------
5
+ Training Example 1:
6
+ {'db_id': 'movie_platform', 'question': 'State the most popular movie? When was it released and who is the director for the movie?', 'evidence': 'most popular movie refers to MAX(movie_popularity); when it was released refers to movie_release_year; director for the movie refers to director_name;', 'target_sql': 'SELECT movie_title, movie_release_year, director_name FROM movies ORDER BY movie_popularity DESC LIMIT 1 ', 'db_schema_T': 'CREATE TABLE "movies"\n(\n movie_id INTEGER not null\n primary key,\n movie_title TEXT,\n movie_release_year INTEGER,\n movie_url TEXT,\n movie_title_language TEXT,\n movie_popularity INTEGER,\n movie_image_url TEXT,\n director_id TEXT,\n director_name TEXT,\n director_url TEXT\n)', 'db_schema': 'CREATE TABLE "lists"\n(\n user_id INTEGER\n references lists_users (user_id),\n list_id INTEGER not null\n primary key,\n list_title TEXT,\n list_movie_number INTEGER,\n list_update_timestamp_utc TEXT,\n list_creation_timestamp_utc TEXT,\n list_followers INTEGER,\n list_url TEXT,\n list_comments INTEGER,\n list_description TEXT,\n list_cover_image_url TEXT,\n list_first_image_url TEXT,\n list_second_image_url TEXT,\n list_third_image_url TEXT\n)\nCREATE TABLE "movies"\n(\n movie_id INTEGER not null\n primary key,\n movie_title TEXT,\n movie_release_year INTEGER,\n movie_url TEXT,\n movie_title_language TEXT,\n movie_popularity INTEGER,\n movie_image_url TEXT,\n director_id TEXT,\n director_name TEXT,\n director_url TEXT\n)\nCREATE TABLE "ratings_users"\n(\n user_id INTEGER\n references lists_users (user_id),\n rating_date_utc TEXT,\n user_trialist INTEGER,\n user_subscriber INTEGER,\n user_avatar_image_url TEXT,\n user_cover_image_url TEXT,\n user_eligible_for_trial INTEGER,\n user_has_payment_method INTEGER\n)\nCREATE TABLE lists_users\n(\n user_id INTEGER not null ,\n list_id INTEGER not null ,\n list_update_date_utc TEXT,\n list_creation_date_utc TEXT,\n user_trialist INTEGER,\n user_subscriber INTEGER,\n user_avatar_image_url TEXT,\n user_cover_image_url TEXT,\n user_eligible_for_trial TEXT,\n user_has_payment_method TEXT,\n primary key (user_id, list_id),\n foreign key (list_id) references lists(list_id),\n foreign key (user_id) references lists(user_id)\n)\nCREATE TABLE ratings\n(\n movie_id INTEGER,\n rating_id INTEGER,\n rating_url TEXT,\n rating_score INTEGER,\n rating_timestamp_utc TEXT,\n critic TEXT,\n critic_likes INTEGER,\n critic_comments INTEGER,\n user_id INTEGER,\n user_trialist INTEGER,\n user_subscriber INTEGER,\n user_eligible_for_trial INTEGER,\n user_has_payment_method INTEGER,\n foreign key (movie_id) references movies(movie_id),\n foreign key (user_id) references lists_users(user_id),\n foreign key (rating_id) references ratings(rating_id),\n foreign key (user_id) references ratings_users(user_id)\n)', 'difficulty': 'na', 'question_id': 1, '__index_level_0__': 1, 'db_schema_TC': 'CREATE TABLE `movies`\n(\n\n movie_title TEXT, \n movie_release_year INTEGER, \n movie_title_language TEXT, \n movie_popularity INTEGER, \n director_name TEXT\n)', 'prompt': [{'content': 'You are a helpful AI Assistant that provides well-reasoned and detailed responses. You first think about the reasoning process as an internal monologue and then provide the user with the answer. Respond in the following format: <think>\n...\n</think>\n<answer>\n...\n</answer>', 'role': 'system'}, {'content': 'Answer the following question with the SQL code. Use the piece of evidence and base your answer on the database schema. Given the question, the evidence and the database schema, return in the <answer> tags only the SQL script that addresses the question.\nQuestion:\nState the most popular movie? When was it released and who is the director for the movie?\n\nEvidence:\nmost popular movie refers to MAX(movie_popularity); when it was released refers to movie_release_year; director for the movie refers to director_name;\n\nDatabase Schema:\nCREATE TABLE "movies"\n(\n movie_id INTEGER not null\n primary key,\n movie_title TEXT,\n movie_release_year INTEGER,\n movie_url TEXT,\n movie_title_language TEXT,\n movie_popularity INTEGER,\n movie_image_url TEXT,\n director_id TEXT,\n director_name TEXT,\n director_url TEXT\n)\n\nReturn only the SQL script enclosed in <answer> tags.', 'role': 'user'}]}
7
+ --------------------------------------------------
8
+ Training Example 2:
9
+ {'db_id': 'movie_platform', 'question': 'What is the name of the longest movie title? When was it released?', 'evidence': 'longest movie title refers to MAX(LENGTH(movie_title)); when it was released refers to movie_release_year;', 'target_sql': 'SELECT movie_title, movie_release_year FROM movies ORDER BY LENGTH(movie_popularity) DESC LIMIT 1', 'db_schema_T': 'CREATE TABLE "movies"\n(\n movie_id INTEGER not null\n primary key,\n movie_title TEXT,\n movie_release_year INTEGER,\n movie_url TEXT,\n movie_title_language TEXT,\n movie_popularity INTEGER,\n movie_image_url TEXT,\n director_id TEXT,\n director_name TEXT,\n director_url TEXT\n)', 'db_schema': 'CREATE TABLE "lists"\n(\n user_id INTEGER\n references lists_users (user_id),\n list_id INTEGER not null\n primary key,\n list_title TEXT,\n list_movie_number INTEGER,\n list_update_timestamp_utc TEXT,\n list_creation_timestamp_utc TEXT,\n list_followers INTEGER,\n list_url TEXT,\n list_comments INTEGER,\n list_description TEXT,\n list_cover_image_url TEXT,\n list_first_image_url TEXT,\n list_second_image_url TEXT,\n list_third_image_url TEXT\n)\nCREATE TABLE "movies"\n(\n movie_id INTEGER not null\n primary key,\n movie_title TEXT,\n movie_release_year INTEGER,\n movie_url TEXT,\n movie_title_language TEXT,\n movie_popularity INTEGER,\n movie_image_url TEXT,\n director_id TEXT,\n director_name TEXT,\n director_url TEXT\n)\nCREATE TABLE "ratings_users"\n(\n user_id INTEGER\n references lists_users (user_id),\n rating_date_utc TEXT,\n user_trialist INTEGER,\n user_subscriber INTEGER,\n user_avatar_image_url TEXT,\n user_cover_image_url TEXT,\n user_eligible_for_trial INTEGER,\n user_has_payment_method INTEGER\n)\nCREATE TABLE lists_users\n(\n user_id INTEGER not null ,\n list_id INTEGER not null ,\n list_update_date_utc TEXT,\n list_creation_date_utc TEXT,\n user_trialist INTEGER,\n user_subscriber INTEGER,\n user_avatar_image_url TEXT,\n user_cover_image_url TEXT,\n user_eligible_for_trial TEXT,\n user_has_payment_method TEXT,\n primary key (user_id, list_id),\n foreign key (list_id) references lists(list_id),\n foreign key (user_id) references lists(user_id)\n)\nCREATE TABLE ratings\n(\n movie_id INTEGER,\n rating_id INTEGER,\n rating_url TEXT,\n rating_score INTEGER,\n rating_timestamp_utc TEXT,\n critic TEXT,\n critic_likes INTEGER,\n critic_comments INTEGER,\n user_id INTEGER,\n user_trialist INTEGER,\n user_subscriber INTEGER,\n user_eligible_for_trial INTEGER,\n user_has_payment_method INTEGER,\n foreign key (movie_id) references movies(movie_id),\n foreign key (user_id) references lists_users(user_id),\n foreign key (rating_id) references ratings(rating_id),\n foreign key (user_id) references ratings_users(user_id)\n)', 'difficulty': 'na', 'question_id': 2, '__index_level_0__': 2, 'db_schema_TC': 'CREATE TABLE `movies`\n(\n\n movie_title TEXT, \n movie_release_year INTEGER, \n movie_title_language TEXT, \n movie_popularity INTEGER\n)', 'prompt': [{'content': 'You are a helpful AI Assistant that provides well-reasoned and detailed responses. You first think about the reasoning process as an internal monologue and then provide the user with the answer. Respond in the following format: <think>\n...\n</think>\n<answer>\n...\n</answer>', 'role': 'system'}, {'content': 'Answer the following question with the SQL code. Use the piece of evidence and base your answer on the database schema. Given the question, the evidence and the database schema, return in the <answer> tags only the SQL script that addresses the question.\nQuestion:\nWhat is the name of the longest movie title? When was it released?\n\nEvidence:\nlongest movie title refers to MAX(LENGTH(movie_title)); when it was released refers to movie_release_year;\n\nDatabase Schema:\nCREATE TABLE "movies"\n(\n movie_id INTEGER not null\n primary key,\n movie_title TEXT,\n movie_release_year INTEGER,\n movie_url TEXT,\n movie_title_language TEXT,\n movie_popularity INTEGER,\n movie_image_url TEXT,\n director_id TEXT,\n director_name TEXT,\n director_url TEXT\n)\n\nReturn only the SQL script enclosed in <answer> tags.', 'role': 'user'}]}
10
+ --------------------------------------------------
11
+ Training Example 3:
12
+ {'db_id': 'movie_platform', 'question': 'Name the movie with the most ratings.', 'evidence': 'movie with the most rating refers to MAX(SUM(rating_score));', 'target_sql': 'SELECT movie_title FROM movies GROUP BY movie_title ORDER BY COUNT(movie_title) DESC LIMIT 1', 'db_schema_T': 'CREATE TABLE "movies"\n(\n movie_id INTEGER not null\n primary key,\n movie_title TEXT,\n movie_release_year INTEGER,\n movie_url TEXT,\n movie_title_language TEXT,\n movie_popularity INTEGER,\n movie_image_url TEXT,\n director_id TEXT,\n director_name TEXT,\n director_url TEXT\n)', 'db_schema': 'CREATE TABLE "lists"\n(\n user_id INTEGER\n references lists_users (user_id),\n list_id INTEGER not null\n primary key,\n list_title TEXT,\n list_movie_number INTEGER,\n list_update_timestamp_utc TEXT,\n list_creation_timestamp_utc TEXT,\n list_followers INTEGER,\n list_url TEXT,\n list_comments INTEGER,\n list_description TEXT,\n list_cover_image_url TEXT,\n list_first_image_url TEXT,\n list_second_image_url TEXT,\n list_third_image_url TEXT\n)\nCREATE TABLE "movies"\n(\n movie_id INTEGER not null\n primary key,\n movie_title TEXT,\n movie_release_year INTEGER,\n movie_url TEXT,\n movie_title_language TEXT,\n movie_popularity INTEGER,\n movie_image_url TEXT,\n director_id TEXT,\n director_name TEXT,\n director_url TEXT\n)\nCREATE TABLE "ratings_users"\n(\n user_id INTEGER\n references lists_users (user_id),\n rating_date_utc TEXT,\n user_trialist INTEGER,\n user_subscriber INTEGER,\n user_avatar_image_url TEXT,\n user_cover_image_url TEXT,\n user_eligible_for_trial INTEGER,\n user_has_payment_method INTEGER\n)\nCREATE TABLE lists_users\n(\n user_id INTEGER not null ,\n list_id INTEGER not null ,\n list_update_date_utc TEXT,\n list_creation_date_utc TEXT,\n user_trialist INTEGER,\n user_subscriber INTEGER,\n user_avatar_image_url TEXT,\n user_cover_image_url TEXT,\n user_eligible_for_trial TEXT,\n user_has_payment_method TEXT,\n primary key (user_id, list_id),\n foreign key (list_id) references lists(list_id),\n foreign key (user_id) references lists(user_id)\n)\nCREATE TABLE ratings\n(\n movie_id INTEGER,\n rating_id INTEGER,\n rating_url TEXT,\n rating_score INTEGER,\n rating_timestamp_utc TEXT,\n critic TEXT,\n critic_likes INTEGER,\n critic_comments INTEGER,\n user_id INTEGER,\n user_trialist INTEGER,\n user_subscriber INTEGER,\n user_eligible_for_trial INTEGER,\n user_has_payment_method INTEGER,\n foreign key (movie_id) references movies(movie_id),\n foreign key (user_id) references lists_users(user_id),\n foreign key (rating_id) references ratings(rating_id),\n foreign key (user_id) references ratings_users(user_id)\n)', 'difficulty': 'na', 'question_id': 3, '__index_level_0__': 3, 'db_schema_TC': 'CREATE TABLE `movies`\n(\n\n movie_title TEXT, \n movie_title_language TEXT\n)', 'prompt': [{'content': 'You are a helpful AI Assistant that provides well-reasoned and detailed responses. You first think about the reasoning process as an internal monologue and then provide the user with the answer. Respond in the following format: <think>\n...\n</think>\n<answer>\n...\n</answer>', 'role': 'system'}, {'content': 'Answer the following question with the SQL code. Use the piece of evidence and base your answer on the database schema. Given the question, the evidence and the database schema, return in the <answer> tags only the SQL script that addresses the question.\nQuestion:\nName the movie with the most ratings.\n\nEvidence:\nmovie with the most rating refers to MAX(SUM(rating_score));\n\nDatabase Schema:\nCREATE TABLE "movies"\n(\n movie_id INTEGER not null\n primary key,\n movie_title TEXT,\n movie_release_year INTEGER,\n movie_url TEXT,\n movie_title_language TEXT,\n movie_popularity INTEGER,\n movie_image_url TEXT,\n director_id TEXT,\n director_name TEXT,\n director_url TEXT\n)\n\nReturn only the SQL script enclosed in <answer> tags.', 'role': 'user'}]}
13
+ --------------------------------------------------
14
+ Training Example 4:
15
+ {'db_id': 'movie_platform', 'question': 'What is the average number of Mubi users who love movies directed by Stanley Kubrick?', 'evidence': 'average = AVG(movie_popularity); number of Mubi users who loves the movie refers to movie_popularity;', 'target_sql': "SELECT AVG(movie_popularity) FROM movies WHERE director_name = 'Stanley Kubrick'", 'db_schema_T': 'CREATE TABLE "movies"\n(\n movie_id INTEGER not null\n primary key,\n movie_title TEXT,\n movie_release_year INTEGER,\n movie_url TEXT,\n movie_title_language TEXT,\n movie_popularity INTEGER,\n movie_image_url TEXT,\n director_id TEXT,\n director_name TEXT,\n director_url TEXT\n)', 'db_schema': 'CREATE TABLE "lists"\n(\n user_id INTEGER\n references lists_users (user_id),\n list_id INTEGER not null\n primary key,\n list_title TEXT,\n list_movie_number INTEGER,\n list_update_timestamp_utc TEXT,\n list_creation_timestamp_utc TEXT,\n list_followers INTEGER,\n list_url TEXT,\n list_comments INTEGER,\n list_description TEXT,\n list_cover_image_url TEXT,\n list_first_image_url TEXT,\n list_second_image_url TEXT,\n list_third_image_url TEXT\n)\nCREATE TABLE "movies"\n(\n movie_id INTEGER not null\n primary key,\n movie_title TEXT,\n movie_release_year INTEGER,\n movie_url TEXT,\n movie_title_language TEXT,\n movie_popularity INTEGER,\n movie_image_url TEXT,\n director_id TEXT,\n director_name TEXT,\n director_url TEXT\n)\nCREATE TABLE "ratings_users"\n(\n user_id INTEGER\n references lists_users (user_id),\n rating_date_utc TEXT,\n user_trialist INTEGER,\n user_subscriber INTEGER,\n user_avatar_image_url TEXT,\n user_cover_image_url TEXT,\n user_eligible_for_trial INTEGER,\n user_has_payment_method INTEGER\n)\nCREATE TABLE lists_users\n(\n user_id INTEGER not null ,\n list_id INTEGER not null ,\n list_update_date_utc TEXT,\n list_creation_date_utc TEXT,\n user_trialist INTEGER,\n user_subscriber INTEGER,\n user_avatar_image_url TEXT,\n user_cover_image_url TEXT,\n user_eligible_for_trial TEXT,\n user_has_payment_method TEXT,\n primary key (user_id, list_id),\n foreign key (list_id) references lists(list_id),\n foreign key (user_id) references lists(user_id)\n)\nCREATE TABLE ratings\n(\n movie_id INTEGER,\n rating_id INTEGER,\n rating_url TEXT,\n rating_score INTEGER,\n rating_timestamp_utc TEXT,\n critic TEXT,\n critic_likes INTEGER,\n critic_comments INTEGER,\n user_id INTEGER,\n user_trialist INTEGER,\n user_subscriber INTEGER,\n user_eligible_for_trial INTEGER,\n user_has_payment_method INTEGER,\n foreign key (movie_id) references movies(movie_id),\n foreign key (user_id) references lists_users(user_id),\n foreign key (rating_id) references ratings(rating_id),\n foreign key (user_id) references ratings_users(user_id)\n)', 'difficulty': 'na', 'question_id': 4, '__index_level_0__': 4, 'db_schema_TC': 'CREATE TABLE `movies`\n(\n\n movie_popularity INTEGER, \n director_name TEXT\n)', 'prompt': [{'content': 'You are a helpful AI Assistant that provides well-reasoned and detailed responses. You first think about the reasoning process as an internal monologue and then provide the user with the answer. Respond in the following format: <think>\n...\n</think>\n<answer>\n...\n</answer>', 'role': 'system'}, {'content': 'Answer the following question with the SQL code. Use the piece of evidence and base your answer on the database schema. Given the question, the evidence and the database schema, return in the <answer> tags only the SQL script that addresses the question.\nQuestion:\nWhat is the average number of Mubi users who love movies directed by Stanley Kubrick?\n\nEvidence:\naverage = AVG(movie_popularity); number of Mubi users who loves the movie refers to movie_popularity;\n\nDatabase Schema:\nCREATE TABLE "movies"\n(\n movie_id INTEGER not null\n primary key,\n movie_title TEXT,\n movie_release_year INTEGER,\n movie_url TEXT,\n movie_title_language TEXT,\n movie_popularity INTEGER,\n movie_image_url TEXT,\n director_id TEXT,\n director_name TEXT,\n director_url TEXT\n)\n\nReturn only the SQL script enclosed in <answer> tags.', 'role': 'user'}]}
16
+ --------------------------------------------------
global_step342/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb315993a77971e26c1ad0e628df803efd74c501cf09c95adf0a97df95d9d21a
3
+ size 22965856869
global_step342/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45d7be690ede6796250a2a935f1ff24a88153a50a5f80ddd1e7538a92d0ffe8d
3
+ size 22965856869
global_step342/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d7427492c1440538ec28494144d0882d74e6914e78250ff65c2484edbbb2c76
3
+ size 166357
global_step342/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bed2e9d73a3f6a533d799d03f15c30684893d59ab98ed493d52b20f530bb8c44
3
+ size 166357
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step342
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:396873229b4eebdcfa8b1ab5bdc07a93c947cf9deb0ca4723d692b5ec6cd0ce8
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<|im_end|>"
25
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63a2951d5edfa5cc0a2346ef872f8c77a2920274cfc3b503b04e3799104dee80
3
+ size 11422060
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 32768,
204
+ "pad_token": "<|im_end|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.0013445673257480432,
4
+ "train_runtime": 158207.651,
5
+ "train_samples": 3,
6
+ "train_samples_per_second": 0.057,
7
+ "train_steps_per_second": 0.004
8
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b1770dd9448df51b56ab873da3b70f1df142148f569d432a0b903acbcf7dd7f
3
+ size 8568
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)