update reported scores
Browse files
README.md
CHANGED
@@ -18,118 +18,79 @@ tags:
|
|
18 |
- sentence-similarity
|
19 |
- feature-extraction
|
20 |
- generated_from_trainer
|
21 |
-
-
|
22 |
-
- loss:MatryoshkaLoss
|
23 |
-
- loss:MultipleNegativesRankingLoss
|
24 |
-
widget:
|
25 |
-
- source_sentence: ما هو علاج الفطريات الجلدية؟
|
26 |
-
sentences:
|
27 |
-
- كيف سيؤثر ذلك على الطلاب الهنود الذين يدرسون أو يعملون في الولايات المتحدة إذا
|
28 |
-
أصبح ترامب رئيساً؟
|
29 |
-
- كيف يمكنك معالجة الأكزيما بشكل طبيعي؟
|
30 |
-
- كيف تعالج الفطريات الجلدية؟
|
31 |
-
- source_sentence: 'So Eric had an initial design idea for a robot, but we didn''t
|
32 |
-
have all the parts figured out, so we did what anybody would do in our situation:
|
33 |
-
we asked the Internet for help.'
|
34 |
-
sentences:
|
35 |
-
- وهكذا أول شيء فعلناه هو , بمجرد أن التسلسل خرج من الماكينات , نشرناه على الإنترنت
|
36 |
-
.
|
37 |
-
- وكانت لدى "إريك" فكرة مبدئية لصناعة روبوت، ولكن لم يكن لدينا فكرة عن القطع التي
|
38 |
-
نحتاجها لذلك قمنا بما يمكن أن يقوم به أي شخص بوضعنا قمنا بطلب المساعدة عبر الإنترنت
|
39 |
-
- ما هي مواقع الويب التي يجب اتباعها لتوصيات الأسهم خلال اليوم في سوق الأسهم الهندية؟
|
40 |
-
- source_sentence: Well, guess what? In England, it's seven per 100,000.
|
41 |
-
sentences:
|
42 |
-
- عندما نكون أطفالًا، نتعلم الضحك، ونتعلم الضحك بشكل أساسي في اللعب.
|
43 |
-
- هذا ليس 10000 دولارا، إنه بالعملة المحلية .
|
44 |
-
- خمنوا ماذا؟ في إنكلترا، النسبة سبع في كل 000 100.
|
45 |
-
- source_sentence: ما هي العوامل الحيوية وغير الحيوية؟ كيف تختلف عن بعضها البعض؟
|
46 |
-
sentences:
|
47 |
-
- ما هي بعض النصائح لتعلم لغة بايثون؟
|
48 |
-
- كما تم تسجيل نتائج إيجابية لثلاثة أيام متتالية.
|
49 |
-
- كيف تقارن العوامل الحيوية والعوامل غير الحيوية وتتناقض؟
|
50 |
-
- source_sentence: And the piece of art he bought at the yard sale is hanging in his
|
51 |
-
classroom; he's a teacher now.
|
52 |
-
sentences:
|
53 |
-
- هل الرياضيات لغة أخرى؟
|
54 |
-
- تدريجيا، أصبحت هذه العصافير بمثابة معلمين له.
|
55 |
-
- أما اللوحات التي أشتراها منّي فهي معلّقة الآن في غرفة الصف خاصّته؛ فقد أصبح مدرّساً.
|
56 |
model-index:
|
57 |
-
- name:
|
58 |
results:
|
59 |
- task:
|
60 |
type: semantic-similarity
|
61 |
name: Semantic Similarity
|
62 |
dataset:
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
65 |
metrics:
|
66 |
- type: pearson_cosine
|
67 |
-
value: 0.
|
68 |
name: Pearson Cosine
|
69 |
- type: spearman_cosine
|
70 |
-
value: 0.
|
71 |
name: Spearman Cosine
|
72 |
- type: pearson_manhattan
|
73 |
-
value: 0.
|
74 |
name: Pearson Manhattan
|
75 |
- type: spearman_manhattan
|
76 |
-
value: 0.
|
77 |
name: Spearman Manhattan
|
78 |
- type: pearson_euclidean
|
79 |
-
value: 0.
|
80 |
name: Pearson Euclidean
|
81 |
- type: spearman_euclidean
|
82 |
-
value: 0.
|
83 |
name: Spearman Euclidean
|
84 |
- type: pearson_dot
|
85 |
-
value: 0.
|
86 |
name: Pearson Dot
|
87 |
- type: spearman_dot
|
88 |
-
value: 0.
|
89 |
name: Spearman Dot
|
90 |
-
- type: pearson_max
|
91 |
-
value: 0.8410341962006318
|
92 |
-
name: Pearson Max
|
93 |
-
- type: spearman_max
|
94 |
-
value: 0.8422963798504417
|
95 |
-
name: Spearman Max
|
96 |
- task:
|
97 |
type: semantic-similarity
|
98 |
name: Semantic Similarity
|
99 |
dataset:
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
102 |
metrics:
|
103 |
- type: pearson_cosine
|
104 |
-
value: 0.
|
105 |
name: Pearson Cosine
|
106 |
- type: spearman_cosine
|
107 |
-
value: 0.
|
108 |
name: Spearman Cosine
|
109 |
- type: pearson_manhattan
|
110 |
-
value: 0.
|
111 |
name: Pearson Manhattan
|
112 |
- type: spearman_manhattan
|
113 |
-
value: 0.
|
114 |
name: Spearman Manhattan
|
115 |
- type: pearson_euclidean
|
116 |
-
value: 0.
|
117 |
name: Pearson Euclidean
|
118 |
- type: spearman_euclidean
|
119 |
-
value: 0.
|
120 |
name: Spearman Euclidean
|
121 |
- type: pearson_dot
|
122 |
-
value: 0.
|
123 |
name: Pearson Dot
|
124 |
- type: spearman_dot
|
125 |
-
value: 0.
|
126 |
name: Spearman Dot
|
127 |
-
|
128 |
-
value: 0.8408199016320912
|
129 |
-
name: Pearson Max
|
130 |
-
- type: spearman_max
|
131 |
-
value: 0.8415754271206667
|
132 |
-
name: Spearman Max
|
133 |
---
|
134 |
|
135 |
# SentenceTransformer based on aubmindlab/bert-base-arabertv02
|
@@ -219,44 +180,6 @@ You can finetune this model on your own dataset.
|
|
219 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
220 |
-->
|
221 |
|
222 |
-
## Evaluation
|
223 |
-
|
224 |
-
### Metrics
|
225 |
-
|
226 |
-
#### Semantic Similarity
|
227 |
-
* Dataset: `sts-dev-768`
|
228 |
-
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
229 |
-
|
230 |
-
| Metric | Value |
|
231 |
-
|:--------------------|:-----------|
|
232 |
-
| pearson_cosine | 0.841 |
|
233 |
-
| **spearman_cosine** | **0.8423** |
|
234 |
-
| pearson_manhattan | 0.8119 |
|
235 |
-
| spearman_manhattan | 0.826 |
|
236 |
-
| pearson_euclidean | 0.8139 |
|
237 |
-
| spearman_euclidean | 0.8317 |
|
238 |
-
| pearson_dot | 0.8372 |
|
239 |
-
| spearman_dot | 0.839 |
|
240 |
-
| pearson_max | 0.841 |
|
241 |
-
| spearman_max | 0.8423 |
|
242 |
-
|
243 |
-
#### Semantic Similarity
|
244 |
-
* Dataset: `sts-dev-512`
|
245 |
-
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
246 |
-
|
247 |
-
| Metric | Value |
|
248 |
-
|:--------------------|:-----------|
|
249 |
-
| pearson_cosine | 0.8408 |
|
250 |
-
| **spearman_cosine** | **0.8416** |
|
251 |
-
| pearson_manhattan | 0.8115 |
|
252 |
-
| spearman_manhattan | 0.8232 |
|
253 |
-
| pearson_euclidean | 0.8126 |
|
254 |
-
| spearman_euclidean | 0.8267 |
|
255 |
-
| pearson_dot | 0.8357 |
|
256 |
-
| spearman_dot | 0.8377 |
|
257 |
-
| pearson_max | 0.8408 |
|
258 |
-
| spearman_max | 0.8416 |
|
259 |
-
|
260 |
<!--
|
261 |
## Bias, Risks and Limitations
|
262 |
|
@@ -273,8 +196,6 @@ You can finetune this model on your own dataset.
|
|
273 |
|
274 |
### Training Dataset
|
275 |
|
276 |
-
#### Unnamed Dataset
|
277 |
-
|
278 |
|
279 |
* Size: 2,279,719 training samples
|
280 |
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
@@ -349,657 +270,6 @@ You can finetune this model on your own dataset.
|
|
349 |
- `bf16`: True
|
350 |
- `batch_sampler`: no_duplicates
|
351 |
|
352 |
-
#### All Hyperparameters
|
353 |
-
<details><summary>Click to expand</summary>
|
354 |
-
|
355 |
-
- `overwrite_output_dir`: False
|
356 |
-
- `do_predict`: False
|
357 |
-
- `eval_strategy`: steps
|
358 |
-
- `prediction_loss_only`: True
|
359 |
-
- `per_device_train_batch_size`: 50
|
360 |
-
- `per_device_eval_batch_size`: 10
|
361 |
-
- `per_gpu_train_batch_size`: None
|
362 |
-
- `per_gpu_eval_batch_size`: None
|
363 |
-
- `gradient_accumulation_steps`: 1
|
364 |
-
- `eval_accumulation_steps`: None
|
365 |
-
- `torch_empty_cache_steps`: None
|
366 |
-
- `learning_rate`: 1e-05
|
367 |
-
- `weight_decay`: 0.0
|
368 |
-
- `adam_beta1`: 0.9
|
369 |
-
- `adam_beta2`: 0.999
|
370 |
-
- `adam_epsilon`: 1e-08
|
371 |
-
- `max_grad_norm`: 1.0
|
372 |
-
- `num_train_epochs`: 3
|
373 |
-
- `max_steps`: -1
|
374 |
-
- `lr_scheduler_type`: linear
|
375 |
-
- `lr_scheduler_kwargs`: {}
|
376 |
-
- `warmup_ratio`: 0.0
|
377 |
-
- `warmup_steps`: 0
|
378 |
-
- `log_level`: passive
|
379 |
-
- `log_level_replica`: warning
|
380 |
-
- `log_on_each_node`: True
|
381 |
-
- `logging_nan_inf_filter`: True
|
382 |
-
- `save_safetensors`: True
|
383 |
-
- `save_on_each_node`: False
|
384 |
-
- `save_only_model`: False
|
385 |
-
- `restore_callback_states_from_checkpoint`: False
|
386 |
-
- `no_cuda`: False
|
387 |
-
- `use_cpu`: False
|
388 |
-
- `use_mps_device`: False
|
389 |
-
- `seed`: 42
|
390 |
-
- `data_seed`: None
|
391 |
-
- `jit_mode_eval`: False
|
392 |
-
- `use_ipex`: False
|
393 |
-
- `bf16`: True
|
394 |
-
- `fp16`: False
|
395 |
-
- `fp16_opt_level`: O1
|
396 |
-
- `half_precision_backend`: auto
|
397 |
-
- `bf16_full_eval`: False
|
398 |
-
- `fp16_full_eval`: False
|
399 |
-
- `tf32`: None
|
400 |
-
- `local_rank`: 0
|
401 |
-
- `ddp_backend`: None
|
402 |
-
- `tpu_num_cores`: None
|
403 |
-
- `tpu_metrics_debug`: False
|
404 |
-
- `debug`: []
|
405 |
-
- `dataloader_drop_last`: True
|
406 |
-
- `dataloader_num_workers`: 0
|
407 |
-
- `dataloader_prefetch_factor`: None
|
408 |
-
- `past_index`: -1
|
409 |
-
- `disable_tqdm`: False
|
410 |
-
- `remove_unused_columns`: True
|
411 |
-
- `label_names`: None
|
412 |
-
- `load_best_model_at_end`: False
|
413 |
-
- `ignore_data_skip`: False
|
414 |
-
- `fsdp`: []
|
415 |
-
- `fsdp_min_num_params`: 0
|
416 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
417 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
418 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
419 |
-
- `deepspeed`: None
|
420 |
-
- `label_smoothing_factor`: 0.0
|
421 |
-
- `optim`: adamw_torch
|
422 |
-
- `optim_args`: None
|
423 |
-
- `adafactor`: False
|
424 |
-
- `group_by_length`: False
|
425 |
-
- `length_column_name`: length
|
426 |
-
- `ddp_find_unused_parameters`: None
|
427 |
-
- `ddp_bucket_cap_mb`: None
|
428 |
-
- `ddp_broadcast_buffers`: False
|
429 |
-
- `dataloader_pin_memory`: True
|
430 |
-
- `dataloader_persistent_workers`: False
|
431 |
-
- `skip_memory_metrics`: True
|
432 |
-
- `use_legacy_prediction_loop`: False
|
433 |
-
- `push_to_hub`: False
|
434 |
-
- `resume_from_checkpoint`: None
|
435 |
-
- `hub_model_id`: None
|
436 |
-
- `hub_strategy`: every_save
|
437 |
-
- `hub_private_repo`: False
|
438 |
-
- `hub_always_push`: False
|
439 |
-
- `gradient_checkpointing`: False
|
440 |
-
- `gradient_checkpointing_kwargs`: None
|
441 |
-
- `include_inputs_for_metrics`: False
|
442 |
-
- `eval_do_concat_batches`: True
|
443 |
-
- `fp16_backend`: auto
|
444 |
-
- `push_to_hub_model_id`: None
|
445 |
-
- `push_to_hub_organization`: None
|
446 |
-
- `mp_parameters`:
|
447 |
-
- `auto_find_batch_size`: False
|
448 |
-
- `full_determinism`: False
|
449 |
-
- `torchdynamo`: None
|
450 |
-
- `ray_scope`: last
|
451 |
-
- `ddp_timeout`: 1800
|
452 |
-
- `torch_compile`: False
|
453 |
-
- `torch_compile_backend`: None
|
454 |
-
- `torch_compile_mode`: None
|
455 |
-
- `dispatch_batches`: None
|
456 |
-
- `split_batches`: None
|
457 |
-
- `include_tokens_per_second`: False
|
458 |
-
- `include_num_input_tokens_seen`: False
|
459 |
-
- `neftune_noise_alpha`: None
|
460 |
-
- `optim_target_modules`: None
|
461 |
-
- `batch_eval_metrics`: False
|
462 |
-
- `eval_on_start`: False
|
463 |
-
- `use_liger_kernel`: False
|
464 |
-
- `eval_use_gather_object`: False
|
465 |
-
- `batch_sampler`: no_duplicates
|
466 |
-
- `multi_dataset_batch_sampler`: proportional
|
467 |
-
|
468 |
-
</details>
|
469 |
-
|
470 |
-
### Training Logs
|
471 |
-
<details><summary>Click to expand</summary>
|
472 |
-
|
473 |
-
| Epoch | Step | Training Loss | Validation Loss | sts-dev-768_spearman_cosine | sts-dev-512_spearman_cosine |
|
474 |
-
|:------:|:-----:|:-------------:|:---------------:|:---------------------------:|:---------------------------:|
|
475 |
-
| 0.0044 | 50 | - | 0.7749 | 0.7784 | 0.7748 |
|
476 |
-
| 0.0088 | 100 | - | 0.6231 | 0.7854 | 0.7809 |
|
477 |
-
| 0.0132 | 150 | - | 0.5326 | 0.8028 | 0.7992 |
|
478 |
-
| 0.0175 | 200 | - | 0.4880 | 0.8103 | 0.8047 |
|
479 |
-
| 0.0219 | 250 | 1.1802 | 0.4398 | 0.8084 | 0.8043 |
|
480 |
-
| 0.0263 | 300 | - | 0.4203 | 0.8108 | 0.8058 |
|
481 |
-
| 0.0307 | 350 | - | 0.3880 | 0.8134 | 0.8075 |
|
482 |
-
| 0.0351 | 400 | - | 0.3998 | 0.8180 | 0.8145 |
|
483 |
-
| 0.0395 | 450 | - | 0.3840 | 0.8154 | 0.8114 |
|
484 |
-
| 0.0439 | 500 | 0.7483 | 0.3804 | 0.8105 | 0.8056 |
|
485 |
-
| 0.0483 | 550 | - | 0.3695 | 0.8147 | 0.8103 |
|
486 |
-
| 0.0526 | 600 | - | 0.3649 | 0.8145 | 0.8101 |
|
487 |
-
| 0.0570 | 650 | - | 0.3494 | 0.8192 | 0.8157 |
|
488 |
-
| 0.0614 | 700 | - | 0.3437 | 0.8159 | 0.8106 |
|
489 |
-
| 0.0658 | 750 | 0.6561 | 0.3302 | 0.8158 | 0.8104 |
|
490 |
-
| 0.0702 | 800 | - | 0.3359 | 0.8204 | 0.8174 |
|
491 |
-
| 0.0746 | 850 | - | 0.3446 | 0.8119 | 0.8094 |
|
492 |
-
| 0.0790 | 900 | - | 0.3419 | 0.8265 | 0.8252 |
|
493 |
-
| 0.0833 | 950 | - | 0.3197 | 0.8177 | 0.8141 |
|
494 |
-
| 0.0877 | 1000 | 0.6178 | 0.3250 | 0.8213 | 0.8185 |
|
495 |
-
| 0.0921 | 1050 | - | 0.3017 | 0.8161 | 0.8127 |
|
496 |
-
| 0.0965 | 1100 | - | 0.3058 | 0.8232 | 0.8180 |
|
497 |
-
| 0.1009 | 1150 | - | 0.3066 | 0.8236 | 0.8193 |
|
498 |
-
| 0.1053 | 1200 | - | 0.2924 | 0.8275 | 0.8237 |
|
499 |
-
| 0.1097 | 1250 | 0.5633 | 0.3096 | 0.8206 | 0.8173 |
|
500 |
-
| 0.1141 | 1300 | - | 0.3009 | 0.8299 | 0.8277 |
|
501 |
-
| 0.1184 | 1350 | - | 0.3067 | 0.8158 | 0.8111 |
|
502 |
-
| 0.1228 | 1400 | - | 0.2898 | 0.8215 | 0.8180 |
|
503 |
-
| 0.1272 | 1450 | - | 0.2810 | 0.8272 | 0.8261 |
|
504 |
-
| 0.1316 | 1500 | 0.5337 | 0.2810 | 0.8228 | 0.8187 |
|
505 |
-
| 0.1360 | 1550 | - | 0.2772 | 0.8167 | 0.8139 |
|
506 |
-
| 0.1404 | 1600 | - | 0.2772 | 0.8228 | 0.8194 |
|
507 |
-
| 0.1448 | 1650 | - | 0.2751 | 0.8193 | 0.8153 |
|
508 |
-
| 0.1491 | 1700 | - | 0.2579 | 0.8182 | 0.8147 |
|
509 |
-
| 0.1535 | 1750 | 0.5154 | 0.2542 | 0.8199 | 0.8166 |
|
510 |
-
| 0.1579 | 1800 | - | 0.2607 | 0.8243 | 0.8224 |
|
511 |
-
| 0.1623 | 1850 | - | 0.2595 | 0.8280 | 0.8254 |
|
512 |
-
| 0.1667 | 1900 | - | 0.2612 | 0.8272 | 0.8255 |
|
513 |
-
| 0.1711 | 1950 | - | 0.2644 | 0.8273 | 0.8242 |
|
514 |
-
| 0.1755 | 2000 | 0.4838 | 0.2618 | 0.8276 | 0.8246 |
|
515 |
-
| 0.1799 | 2050 | - | 0.2553 | 0.8219 | 0.8200 |
|
516 |
-
| 0.1842 | 2100 | - | 0.2581 | 0.8232 | 0.8217 |
|
517 |
-
| 0.1886 | 2150 | - | 0.2620 | 0.8254 | 0.8232 |
|
518 |
-
| 0.1930 | 2200 | - | 0.2627 | 0.8235 | 0.8193 |
|
519 |
-
| 0.1974 | 2250 | 0.486 | 0.2597 | 0.8170 | 0.8142 |
|
520 |
-
| 0.2018 | 2300 | - | 0.2605 | 0.8261 | 0.8231 |
|
521 |
-
| 0.2062 | 2350 | - | 0.2584 | 0.8252 | 0.8222 |
|
522 |
-
| 0.2106 | 2400 | - | 0.2663 | 0.8247 | 0.8228 |
|
523 |
-
| 0.2149 | 2450 | - | 0.2527 | 0.8285 | 0.8280 |
|
524 |
-
| 0.2193 | 2500 | 0.4523 | 0.2487 | 0.8291 | 0.8270 |
|
525 |
-
| 0.2237 | 2550 | - | 0.2524 | 0.8257 | 0.8244 |
|
526 |
-
| 0.2281 | 2600 | - | 0.2513 | 0.8228 | 0.8210 |
|
527 |
-
| 0.2325 | 2650 | - | 0.2531 | 0.8287 | 0.8265 |
|
528 |
-
| 0.2369 | 2700 | - | 0.2510 | 0.8224 | 0.8198 |
|
529 |
-
| 0.2413 | 2750 | 0.4522 | 0.2523 | 0.8275 | 0.8260 |
|
530 |
-
| 0.2457 | 2800 | - | 0.2563 | 0.8301 | 0.8278 |
|
531 |
-
| 0.2500 | 2850 | - | 0.2531 | 0.8242 | 0.8242 |
|
532 |
-
| 0.2544 | 2900 | - | 0.2527 | 0.8268 | 0.8268 |
|
533 |
-
| 0.2588 | 2950 | - | 0.2465 | 0.8228 | 0.8223 |
|
534 |
-
| 0.2632 | 3000 | 0.4472 | 0.2422 | 0.8263 | 0.8237 |
|
535 |
-
| 0.2676 | 3050 | - | 0.2484 | 0.8223 | 0.8195 |
|
536 |
-
| 0.2720 | 3100 | - | 0.2469 | 0.8209 | 0.8206 |
|
537 |
-
| 0.2764 | 3150 | - | 0.2419 | 0.8283 | 0.8281 |
|
538 |
-
| 0.2808 | 3200 | - | 0.2370 | 0.8303 | 0.8286 |
|
539 |
-
| 0.2851 | 3250 | 0.4499 | 0.2374 | 0.8293 | 0.8275 |
|
540 |
-
| 0.2895 | 3300 | - | 0.2340 | 0.8255 | 0.8255 |
|
541 |
-
| 0.2939 | 3350 | - | 0.2461 | 0.8277 | 0.8292 |
|
542 |
-
| 0.2983 | 3400 | - | 0.2421 | 0.8320 | 0.8307 |
|
543 |
-
| 0.3027 | 3450 | - | 0.2366 | 0.8286 | 0.8281 |
|
544 |
-
| 0.3071 | 3500 | 0.4305 | 0.2389 | 0.8312 | 0.8293 |
|
545 |
-
| 0.3115 | 3550 | - | 0.2360 | 0.8305 | 0.8310 |
|
546 |
-
| 0.3158 | 3600 | - | 0.2313 | 0.8271 | 0.8256 |
|
547 |
-
| 0.3202 | 3650 | - | 0.2182 | 0.8231 | 0.8197 |
|
548 |
-
| 0.3246 | 3700 | - | 0.2220 | 0.8274 | 0.8246 |
|
549 |
-
| 0.3290 | 3750 | 0.4221 | 0.2305 | 0.8301 | 0.8292 |
|
550 |
-
| 0.3334 | 3800 | - | 0.2244 | 0.8285 | 0.8265 |
|
551 |
-
| 0.3378 | 3850 | - | 0.2355 | 0.8349 | 0.8331 |
|
552 |
-
| 0.3422 | 3900 | - | 0.2256 | 0.8355 | 0.8330 |
|
553 |
-
| 0.3466 | 3950 | - | 0.2273 | 0.8330 | 0.8299 |
|
554 |
-
| 0.3509 | 4000 | 0.4203 | 0.2334 | 0.8304 | 0.8275 |
|
555 |
-
| 0.3553 | 4050 | - | 0.2223 | 0.8323 | 0.8305 |
|
556 |
-
| 0.3597 | 4100 | - | 0.2314 | 0.8323 | 0.8299 |
|
557 |
-
| 0.3641 | 4150 | - | 0.2196 | 0.8272 | 0.8244 |
|
558 |
-
| 0.3685 | 4200 | - | 0.2275 | 0.8342 | 0.8353 |
|
559 |
-
| 0.3729 | 4250 | 0.4039 | 0.2209 | 0.8348 | 0.8333 |
|
560 |
-
| 0.3773 | 4300 | - | 0.2152 | 0.8314 | 0.8307 |
|
561 |
-
| 0.3816 | 4350 | - | 0.2115 | 0.8353 | 0.8325 |
|
562 |
-
| 0.3860 | 4400 | - | 0.2195 | 0.8347 | 0.8310 |
|
563 |
-
| 0.3904 | 4450 | - | 0.2110 | 0.8293 | 0.8264 |
|
564 |
-
| 0.3948 | 4500 | 0.4065 | 0.2115 | 0.8321 | 0.8293 |
|
565 |
-
| 0.3992 | 4550 | - | 0.2139 | 0.8312 | 0.8286 |
|
566 |
-
| 0.4036 | 4600 | - | 0.2145 | 0.8319 | 0.8285 |
|
567 |
-
| 0.4080 | 4650 | - | 0.2127 | 0.8281 | 0.8255 |
|
568 |
-
| 0.4124 | 4700 | - | 0.2122 | 0.8292 | 0.8268 |
|
569 |
-
| 0.4167 | 4750 | 0.4019 | 0.2160 | 0.8354 | 0.8329 |
|
570 |
-
| 0.4211 | 4800 | - | 0.2069 | 0.8296 | 0.8258 |
|
571 |
-
| 0.4255 | 4850 | - | 0.2106 | 0.8362 | 0.8335 |
|
572 |
-
| 0.4299 | 4900 | - | 0.2130 | 0.8345 | 0.8321 |
|
573 |
-
| 0.4343 | 4950 | - | 0.2080 | 0.8307 | 0.8277 |
|
574 |
-
| 0.4387 | 5000 | 0.3941 | 0.2184 | 0.8394 | 0.8370 |
|
575 |
-
| 0.4431 | 5050 | - | 0.2061 | 0.8334 | 0.8325 |
|
576 |
-
| 0.4474 | 5100 | - | 0.2092 | 0.8318 | 0.8307 |
|
577 |
-
| 0.4518 | 5150 | - | 0.2108 | 0.8319 | 0.8289 |
|
578 |
-
| 0.4562 | 5200 | - | 0.2046 | 0.8359 | 0.8337 |
|
579 |
-
| 0.4606 | 5250 | 0.3873 | 0.1990 | 0.8327 | 0.8305 |
|
580 |
-
| 0.4650 | 5300 | - | 0.2007 | 0.8332 | 0.8305 |
|
581 |
-
| 0.4694 | 5350 | - | 0.1989 | 0.8284 | 0.8247 |
|
582 |
-
| 0.4738 | 5400 | - | 0.2117 | 0.8363 | 0.8346 |
|
583 |
-
| 0.4782 | 5450 | - | 0.2036 | 0.8329 | 0.8296 |
|
584 |
-
| 0.4825 | 5500 | 0.3808 | 0.1999 | 0.8341 | 0.8295 |
|
585 |
-
| 0.4869 | 5550 | - | 0.1998 | 0.8336 | 0.8300 |
|
586 |
-
| 0.4913 | 5600 | - | 0.2040 | 0.8348 | 0.8331 |
|
587 |
-
| 0.4957 | 5650 | - | 0.2068 | 0.8367 | 0.8346 |
|
588 |
-
| 0.5001 | 5700 | - | 0.1947 | 0.8333 | 0.8305 |
|
589 |
-
| 0.5045 | 5750 | 0.3779 | 0.1969 | 0.8352 | 0.8329 |
|
590 |
-
| 0.5089 | 5800 | - | 0.2028 | 0.8372 | 0.8369 |
|
591 |
-
| 0.5132 | 5850 | - | 0.2029 | 0.8336 | 0.8319 |
|
592 |
-
| 0.5176 | 5900 | - | 0.2029 | 0.8317 | 0.8309 |
|
593 |
-
| 0.5220 | 5950 | - | 0.2059 | 0.8270 | 0.8270 |
|
594 |
-
| 0.5264 | 6000 | 0.3704 | 0.1997 | 0.8263 | 0.8236 |
|
595 |
-
| 0.5308 | 6050 | - | 0.2001 | 0.8280 | 0.8252 |
|
596 |
-
| 0.5352 | 6100 | - | 0.1985 | 0.8275 | 0.8241 |
|
597 |
-
| 0.5396 | 6150 | - | 0.1976 | 0.8281 | 0.8281 |
|
598 |
-
| 0.5440 | 6200 | - | 0.1987 | 0.8270 | 0.8247 |
|
599 |
-
| 0.5483 | 6250 | 0.3722 | 0.2045 | 0.8320 | 0.8303 |
|
600 |
-
| 0.5527 | 6300 | - | 0.2013 | 0.8292 | 0.8278 |
|
601 |
-
| 0.5571 | 6350 | - | 0.2007 | 0.8302 | 0.8279 |
|
602 |
-
| 0.5615 | 6400 | - | 0.1949 | 0.8297 | 0.8274 |
|
603 |
-
| 0.5659 | 6450 | - | 0.2037 | 0.8335 | 0.8313 |
|
604 |
-
| 0.5703 | 6500 | 0.3638 | 0.2060 | 0.8316 | 0.8280 |
|
605 |
-
| 0.5747 | 6550 | - | 0.2030 | 0.8372 | 0.8348 |
|
606 |
-
| 0.5790 | 6600 | - | 0.1982 | 0.8317 | 0.8295 |
|
607 |
-
| 0.5834 | 6650 | - | 0.2075 | 0.8324 | 0.8325 |
|
608 |
-
| 0.5878 | 6700 | - | 0.2014 | 0.8306 | 0.8284 |
|
609 |
-
| 0.5922 | 6750 | 0.3581 | 0.1983 | 0.8360 | 0.8344 |
|
610 |
-
| 0.5966 | 6800 | - | 0.2007 | 0.8337 | 0.8313 |
|
611 |
-
| 0.6010 | 6850 | - | 0.2003 | 0.8349 | 0.8338 |
|
612 |
-
| 0.6054 | 6900 | - | 0.2018 | 0.8313 | 0.8305 |
|
613 |
-
| 0.6098 | 6950 | - | 0.1978 | 0.8323 | 0.8307 |
|
614 |
-
| 0.6141 | 7000 | 0.3596 | 0.1991 | 0.8370 | 0.8340 |
|
615 |
-
| 0.6185 | 7050 | - | 0.1963 | 0.8330 | 0.8302 |
|
616 |
-
| 0.6229 | 7100 | - | 0.1918 | 0.8334 | 0.8320 |
|
617 |
-
| 0.6273 | 7150 | - | 0.2008 | 0.8338 | 0.8327 |
|
618 |
-
| 0.6317 | 7200 | - | 0.1973 | 0.8320 | 0.8295 |
|
619 |
-
| 0.6361 | 7250 | 0.3614 | 0.1891 | 0.8339 | 0.8322 |
|
620 |
-
| 0.6405 | 7300 | - | 0.1961 | 0.8355 | 0.8332 |
|
621 |
-
| 0.6448 | 7350 | - | 0.1910 | 0.8322 | 0.8304 |
|
622 |
-
| 0.6492 | 7400 | - | 0.1926 | 0.8343 | 0.8331 |
|
623 |
-
| 0.6536 | 7450 | - | 0.1935 | 0.8310 | 0.8292 |
|
624 |
-
| 0.6580 | 7500 | 0.3513 | 0.1969 | 0.8337 | 0.8346 |
|
625 |
-
| 0.6624 | 7550 | - | 0.1891 | 0.8331 | 0.8311 |
|
626 |
-
| 0.6668 | 7600 | - | 0.1932 | 0.8369 | 0.8341 |
|
627 |
-
| 0.6712 | 7650 | - | 0.2041 | 0.8370 | 0.8357 |
|
628 |
-
| 0.6756 | 7700 | - | 0.1946 | 0.8335 | 0.8314 |
|
629 |
-
| 0.6799 | 7750 | 0.3426 | 0.1955 | 0.8364 | 0.8330 |
|
630 |
-
| 0.6843 | 7800 | - | 0.1940 | 0.8316 | 0.8307 |
|
631 |
-
| 0.6887 | 7850 | - | 0.1893 | 0.8323 | 0.8322 |
|
632 |
-
| 0.6931 | 7900 | - | 0.1839 | 0.8296 | 0.8286 |
|
633 |
-
| 0.6975 | 7950 | - | 0.1895 | 0.8321 | 0.8296 |
|
634 |
-
| 0.7019 | 8000 | 0.3406 | 0.1901 | 0.8277 | 0.8263 |
|
635 |
-
| 0.7063 | 8050 | - | 0.1835 | 0.8331 | 0.8284 |
|
636 |
-
| 0.7107 | 8100 | - | 0.1847 | 0.8359 | 0.8342 |
|
637 |
-
| 0.7150 | 8150 | - | 0.1892 | 0.8362 | 0.8348 |
|
638 |
-
| 0.7194 | 8200 | - | 0.1775 | 0.8339 | 0.8305 |
|
639 |
-
| 0.7238 | 8250 | 0.3357 | 0.1921 | 0.8359 | 0.8340 |
|
640 |
-
| 0.7282 | 8300 | - | 0.1881 | 0.8369 | 0.8344 |
|
641 |
-
| 0.7326 | 8350 | - | 0.1891 | 0.8371 | 0.8363 |
|
642 |
-
| 0.7370 | 8400 | - | 0.1880 | 0.8394 | 0.8364 |
|
643 |
-
| 0.7414 | 8450 | - | 0.1892 | 0.8348 | 0.8306 |
|
644 |
-
| 0.7457 | 8500 | 0.327 | 0.1868 | 0.8388 | 0.8353 |
|
645 |
-
| 0.7501 | 8550 | - | 0.1815 | 0.8378 | 0.8352 |
|
646 |
-
| 0.7545 | 8600 | - | 0.1877 | 0.8398 | 0.8370 |
|
647 |
-
| 0.7589 | 8650 | - | 0.1878 | 0.8392 | 0.8378 |
|
648 |
-
| 0.7633 | 8700 | - | 0.1778 | 0.8330 | 0.8304 |
|
649 |
-
| 0.7677 | 8750 | 0.3288 | 0.1791 | 0.8390 | 0.8360 |
|
650 |
-
| 0.7721 | 8800 | - | 0.1803 | 0.8298 | 0.8270 |
|
651 |
-
| 0.7765 | 8850 | - | 0.1803 | 0.8358 | 0.8323 |
|
652 |
-
| 0.7808 | 8900 | - | 0.1832 | 0.8330 | 0.8322 |
|
653 |
-
| 0.7852 | 8950 | - | 0.1767 | 0.8316 | 0.8286 |
|
654 |
-
| 0.7896 | 9000 | 0.329 | 0.1808 | 0.8283 | 0.8254 |
|
655 |
-
| 0.7940 | 9050 | - | 0.1842 | 0.8331 | 0.8293 |
|
656 |
-
| 0.7984 | 9100 | - | 0.1750 | 0.8304 | 0.8275 |
|
657 |
-
| 0.8028 | 9150 | - | 0.1779 | 0.8299 | 0.8270 |
|
658 |
-
| 0.8072 | 9200 | - | 0.1799 | 0.8332 | 0.8332 |
|
659 |
-
| 0.8115 | 9250 | 0.3283 | 0.1872 | 0.8399 | 0.8371 |
|
660 |
-
| 0.8159 | 9300 | - | 0.1842 | 0.8364 | 0.8352 |
|
661 |
-
| 0.8203 | 9350 | - | 0.1785 | 0.8415 | 0.8382 |
|
662 |
-
| 0.8247 | 9400 | - | 0.1822 | 0.8432 | 0.8407 |
|
663 |
-
| 0.8291 | 9450 | - | 0.1745 | 0.8380 | 0.8364 |
|
664 |
-
| 0.8335 | 9500 | 0.3271 | 0.1745 | 0.8374 | 0.8352 |
|
665 |
-
| 0.8379 | 9550 | - | 0.1746 | 0.8363 | 0.8332 |
|
666 |
-
| 0.8423 | 9600 | - | 0.1776 | 0.8391 | 0.8374 |
|
667 |
-
| 0.8466 | 9650 | - | 0.1760 | 0.8379 | 0.8353 |
|
668 |
-
| 0.8510 | 9700 | - | 0.1806 | 0.8360 | 0.8335 |
|
669 |
-
| 0.8554 | 9750 | 0.3309 | 0.1822 | 0.8368 | 0.8337 |
|
670 |
-
| 0.8598 | 9800 | - | 0.1765 | 0.8366 | 0.8336 |
|
671 |
-
| 0.8642 | 9850 | - | 0.1766 | 0.8353 | 0.8323 |
|
672 |
-
| 0.8686 | 9900 | - | 0.1698 | 0.8353 | 0.8315 |
|
673 |
-
| 0.8730 | 9950 | - | 0.1715 | 0.8378 | 0.8338 |
|
674 |
-
| 0.8773 | 10000 | 0.318 | 0.1782 | 0.8396 | 0.8357 |
|
675 |
-
| 0.8817 | 10050 | - | 0.1727 | 0.8382 | 0.8368 |
|
676 |
-
| 0.8861 | 10100 | - | 0.1740 | 0.8356 | 0.8330 |
|
677 |
-
| 0.8905 | 10150 | - | 0.1723 | 0.8347 | 0.8319 |
|
678 |
-
| 0.8949 | 10200 | - | 0.1656 | 0.8336 | 0.8314 |
|
679 |
-
| 0.8993 | 10250 | 0.3284 | 0.1742 | 0.8288 | 0.8264 |
|
680 |
-
| 0.9037 | 10300 | - | 0.1679 | 0.8315 | 0.8296 |
|
681 |
-
| 0.9081 | 10350 | - | 0.1694 | 0.8325 | 0.8296 |
|
682 |
-
| 0.9124 | 10400 | - | 0.1723 | 0.8319 | 0.8305 |
|
683 |
-
| 0.9168 | 10450 | - | 0.1638 | 0.8340 | 0.8310 |
|
684 |
-
| 0.9212 | 10500 | 0.313 | 0.1730 | 0.8371 | 0.8368 |
|
685 |
-
| 0.9256 | 10550 | - | 0.1639 | 0.8351 | 0.8327 |
|
686 |
-
| 0.9300 | 10600 | - | 0.1634 | 0.8379 | 0.8350 |
|
687 |
-
| 0.9344 | 10650 | - | 0.1745 | 0.8353 | 0.8340 |
|
688 |
-
| 0.9388 | 10700 | - | 0.1731 | 0.8349 | 0.8346 |
|
689 |
-
| 0.9431 | 10750 | 0.3145 | 0.1668 | 0.8333 | 0.8314 |
|
690 |
-
| 0.9475 | 10800 | - | 0.1653 | 0.8351 | 0.8338 |
|
691 |
-
| 0.9519 | 10850 | - | 0.1655 | 0.8401 | 0.8390 |
|
692 |
-
| 0.9563 | 10900 | - | 0.1708 | 0.8376 | 0.8360 |
|
693 |
-
| 0.9607 | 10950 | - | 0.1740 | 0.8382 | 0.8364 |
|
694 |
-
| 0.9651 | 11000 | 0.3002 | 0.1714 | 0.8401 | 0.8382 |
|
695 |
-
| 0.9695 | 11050 | - | 0.1647 | 0.8411 | 0.8393 |
|
696 |
-
| 0.9739 | 11100 | - | 0.1701 | 0.8418 | 0.8396 |
|
697 |
-
| 0.9782 | 11150 | - | 0.1665 | 0.8394 | 0.8379 |
|
698 |
-
| 0.9826 | 11200 | - | 0.1652 | 0.8377 | 0.8376 |
|
699 |
-
| 0.9870 | 11250 | 0.3094 | 0.1665 | 0.8408 | 0.8397 |
|
700 |
-
| 0.9914 | 11300 | - | 0.1689 | 0.8412 | 0.8393 |
|
701 |
-
| 0.9958 | 11350 | - | 0.1674 | 0.8400 | 0.8374 |
|
702 |
-
| 1.0002 | 11400 | - | 0.1694 | 0.8395 | 0.8376 |
|
703 |
-
| 1.0046 | 11450 | - | 0.1697 | 0.8434 | 0.8419 |
|
704 |
-
| 1.0089 | 11500 | 0.3004 | 0.1640 | 0.8399 | 0.8388 |
|
705 |
-
| 1.0133 | 11550 | - | 0.1731 | 0.8445 | 0.8426 |
|
706 |
-
| 1.0177 | 11600 | - | 0.1618 | 0.8430 | 0.8389 |
|
707 |
-
| 1.0221 | 11650 | - | 0.1646 | 0.8414 | 0.8377 |
|
708 |
-
| 1.0265 | 11700 | - | 0.1679 | 0.8435 | 0.8401 |
|
709 |
-
| 1.0309 | 11750 | 0.2984 | 0.1646 | 0.8413 | 0.8385 |
|
710 |
-
| 1.0353 | 11800 | - | 0.1797 | 0.8465 | 0.8432 |
|
711 |
-
| 1.0397 | 11850 | - | 0.1758 | 0.8393 | 0.8390 |
|
712 |
-
| 1.0440 | 11900 | - | 0.1690 | 0.8401 | 0.8379 |
|
713 |
-
| 1.0484 | 11950 | - | 0.1735 | 0.8423 | 0.8404 |
|
714 |
-
| 1.0528 | 12000 | 0.2896 | 0.1719 | 0.8384 | 0.8367 |
|
715 |
-
| 1.0572 | 12050 | - | 0.1759 | 0.8420 | 0.8403 |
|
716 |
-
| 1.0616 | 12100 | - | 0.1659 | 0.8360 | 0.8340 |
|
717 |
-
| 1.0660 | 12150 | - | 0.1645 | 0.8368 | 0.8362 |
|
718 |
-
| 1.0704 | 12200 | - | 0.1601 | 0.8380 | 0.8355 |
|
719 |
-
| 1.0747 | 12250 | 0.2954 | 0.1711 | 0.8406 | 0.8387 |
|
720 |
-
| 1.0791 | 12300 | - | 0.1691 | 0.8389 | 0.8370 |
|
721 |
-
| 1.0835 | 12350 | - | 0.1721 | 0.8397 | 0.8385 |
|
722 |
-
| 1.0879 | 12400 | - | 0.1689 | 0.8379 | 0.8351 |
|
723 |
-
| 1.0923 | 12450 | - | 0.1663 | 0.8424 | 0.8402 |
|
724 |
-
| 1.0967 | 12500 | 0.2864 | 0.1672 | 0.8418 | 0.8403 |
|
725 |
-
| 1.1011 | 12550 | - | 0.1689 | 0.8389 | 0.8386 |
|
726 |
-
| 1.1055 | 12600 | - | 0.1664 | 0.8410 | 0.8402 |
|
727 |
-
| 1.1098 | 12650 | - | 0.1685 | 0.8387 | 0.8376 |
|
728 |
-
| 1.1142 | 12700 | - | 0.1715 | 0.8419 | 0.8402 |
|
729 |
-
| 1.1186 | 12750 | 0.2745 | 0.1607 | 0.8373 | 0.8336 |
|
730 |
-
| 1.1230 | 12800 | - | 0.1620 | 0.8388 | 0.8379 |
|
731 |
-
| 1.1274 | 12850 | - | 0.1623 | 0.8417 | 0.8396 |
|
732 |
-
| 1.1318 | 12900 | - | 0.1589 | 0.8360 | 0.8342 |
|
733 |
-
| 1.1362 | 12950 | - | 0.1567 | 0.8300 | 0.8298 |
|
734 |
-
| 1.1406 | 13000 | 0.2768 | 0.1557 | 0.8406 | 0.8365 |
|
735 |
-
| 1.1449 | 13050 | - | 0.1581 | 0.8389 | 0.8363 |
|
736 |
-
| 1.1493 | 13100 | - | 0.1611 | 0.8399 | 0.8366 |
|
737 |
-
| 1.1537 | 13150 | - | 0.1583 | 0.8358 | 0.8348 |
|
738 |
-
| 1.1581 | 13200 | - | 0.1619 | 0.8405 | 0.8387 |
|
739 |
-
| 1.1625 | 13250 | 0.2737 | 0.1567 | 0.8373 | 0.8339 |
|
740 |
-
| 1.1669 | 13300 | - | 0.1642 | 0.8393 | 0.8374 |
|
741 |
-
| 1.1713 | 13350 | - | 0.1646 | 0.8404 | 0.8376 |
|
742 |
-
| 1.1756 | 13400 | - | 0.1601 | 0.8419 | 0.8402 |
|
743 |
-
| 1.1800 | 13450 | - | 0.1648 | 0.8412 | 0.8391 |
|
744 |
-
| 1.1844 | 13500 | 0.2627 | 0.1635 | 0.8403 | 0.8403 |
|
745 |
-
| 1.1888 | 13550 | - | 0.1662 | 0.8427 | 0.8407 |
|
746 |
-
| 1.1932 | 13600 | - | 0.1687 | 0.8381 | 0.8368 |
|
747 |
-
| 1.1976 | 13650 | - | 0.1693 | 0.8366 | 0.8365 |
|
748 |
-
| 1.2020 | 13700 | - | 0.1665 | 0.8410 | 0.8397 |
|
749 |
-
| 1.2064 | 13750 | 0.2738 | 0.1665 | 0.8373 | 0.8360 |
|
750 |
-
| 1.2107 | 13800 | - | 0.1667 | 0.8388 | 0.8389 |
|
751 |
-
| 1.2151 | 13850 | - | 0.1674 | 0.8455 | 0.8413 |
|
752 |
-
| 1.2195 | 13900 | - | 0.1704 | 0.8419 | 0.8382 |
|
753 |
-
| 1.2239 | 13950 | - | 0.1654 | 0.8417 | 0.8398 |
|
754 |
-
| 1.2283 | 14000 | 0.2563 | 0.1610 | 0.8414 | 0.8403 |
|
755 |
-
| 1.2327 | 14050 | - | 0.1625 | 0.8416 | 0.8380 |
|
756 |
-
| 1.2371 | 14100 | - | 0.1705 | 0.8411 | 0.8400 |
|
757 |
-
| 1.2414 | 14150 | - | 0.1628 | 0.8400 | 0.8384 |
|
758 |
-
| 1.2458 | 14200 | - | 0.1667 | 0.8448 | 0.8435 |
|
759 |
-
| 1.2502 | 14250 | 0.2693 | 0.1651 | 0.8406 | 0.8396 |
|
760 |
-
| 1.2546 | 14300 | - | 0.1673 | 0.8404 | 0.8388 |
|
761 |
-
| 1.2590 | 14350 | - | 0.1630 | 0.8392 | 0.8375 |
|
762 |
-
| 1.2634 | 14400 | - | 0.1633 | 0.8413 | 0.8403 |
|
763 |
-
| 1.2678 | 14450 | - | 0.1636 | 0.8412 | 0.8398 |
|
764 |
-
| 1.2722 | 14500 | 0.266 | 0.1613 | 0.8404 | 0.8379 |
|
765 |
-
| 1.2765 | 14550 | - | 0.1625 | 0.8392 | 0.8380 |
|
766 |
-
| 1.2809 | 14600 | - | 0.1634 | 0.8418 | 0.8397 |
|
767 |
-
| 1.2853 | 14650 | - | 0.1689 | 0.8426 | 0.8428 |
|
768 |
-
| 1.2897 | 14700 | - | 0.1617 | 0.8410 | 0.8405 |
|
769 |
-
| 1.2941 | 14750 | 0.2643 | 0.1661 | 0.8437 | 0.8417 |
|
770 |
-
| 1.2985 | 14800 | - | 0.1629 | 0.8409 | 0.8394 |
|
771 |
-
| 1.3029 | 14850 | - | 0.1584 | 0.8413 | 0.8387 |
|
772 |
-
| 1.3072 | 14900 | - | 0.1638 | 0.8446 | 0.8433 |
|
773 |
-
| 1.3116 | 14950 | - | 0.1644 | 0.8429 | 0.8426 |
|
774 |
-
| 1.3160 | 15000 | 0.2624 | 0.1570 | 0.8391 | 0.8386 |
|
775 |
-
| 1.3204 | 15050 | - | 0.1535 | 0.8367 | 0.8348 |
|
776 |
-
| 1.3248 | 15100 | - | 0.1591 | 0.8381 | 0.8367 |
|
777 |
-
| 1.3292 | 15150 | - | 0.1618 | 0.8421 | 0.8409 |
|
778 |
-
| 1.3336 | 15200 | - | 0.1554 | 0.8402 | 0.8381 |
|
779 |
-
| 1.3380 | 15250 | 0.2621 | 0.1595 | 0.8431 | 0.8427 |
|
780 |
-
| 1.3423 | 15300 | - | 0.1595 | 0.8447 | 0.8435 |
|
781 |
-
| 1.3467 | 15350 | - | 0.1585 | 0.8408 | 0.8394 |
|
782 |
-
| 1.3511 | 15400 | - | 0.1635 | 0.8403 | 0.8389 |
|
783 |
-
| 1.3555 | 15450 | - | 0.1569 | 0.8453 | 0.8444 |
|
784 |
-
| 1.3599 | 15500 | 0.2552 | 0.1605 | 0.8434 | 0.8412 |
|
785 |
-
| 1.3643 | 15550 | - | 0.1542 | 0.8420 | 0.8397 |
|
786 |
-
| 1.3687 | 15600 | - | 0.1622 | 0.8456 | 0.8451 |
|
787 |
-
| 1.3730 | 15650 | - | 0.1569 | 0.8466 | 0.8443 |
|
788 |
-
| 1.3774 | 15700 | - | 0.1550 | 0.8440 | 0.8416 |
|
789 |
-
| 1.3818 | 15750 | 0.2532 | 0.1569 | 0.8459 | 0.8445 |
|
790 |
-
| 1.3862 | 15800 | - | 0.1567 | 0.8462 | 0.8451 |
|
791 |
-
| 1.3906 | 15850 | - | 0.1504 | 0.8442 | 0.8422 |
|
792 |
-
| 1.3950 | 15900 | - | 0.1524 | 0.8437 | 0.8419 |
|
793 |
-
| 1.3994 | 15950 | - | 0.1491 | 0.8438 | 0.8413 |
|
794 |
-
| 1.4038 | 16000 | 0.265 | 0.1533 | 0.8428 | 0.8406 |
|
795 |
-
| 1.4081 | 16050 | - | 0.1492 | 0.8425 | 0.8399 |
|
796 |
-
| 1.4125 | 16100 | - | 0.1486 | 0.8410 | 0.8386 |
|
797 |
-
| 1.4169 | 16150 | - | 0.1530 | 0.8458 | 0.8433 |
|
798 |
-
| 1.4213 | 16200 | - | 0.1535 | 0.8437 | 0.8427 |
|
799 |
-
| 1.4257 | 16250 | 0.2512 | 0.1508 | 0.8453 | 0.8446 |
|
800 |
-
| 1.4301 | 16300 | - | 0.1540 | 0.8427 | 0.8411 |
|
801 |
-
| 1.4345 | 16350 | - | 0.1513 | 0.8414 | 0.8388 |
|
802 |
-
| 1.4388 | 16400 | - | 0.1553 | 0.8464 | 0.8461 |
|
803 |
-
| 1.4432 | 16450 | - | 0.1528 | 0.8434 | 0.8412 |
|
804 |
-
| 1.4476 | 16500 | 0.2545 | 0.1522 | 0.8419 | 0.8399 |
|
805 |
-
| 1.4520 | 16550 | - | 0.1521 | 0.8423 | 0.8416 |
|
806 |
-
| 1.4564 | 16600 | - | 0.1433 | 0.8427 | 0.8410 |
|
807 |
-
| 1.4608 | 16650 | - | 0.1500 | 0.8419 | 0.8401 |
|
808 |
-
| 1.4652 | 16700 | - | 0.1442 | 0.8425 | 0.8392 |
|
809 |
-
| 1.4696 | 16750 | 0.2549 | 0.1496 | 0.8397 | 0.8376 |
|
810 |
-
| 1.4739 | 16800 | - | 0.1556 | 0.8463 | 0.8435 |
|
811 |
-
| 1.4783 | 16850 | - | 0.1510 | 0.8458 | 0.8432 |
|
812 |
-
| 1.4827 | 16900 | - | 0.1469 | 0.8431 | 0.8423 |
|
813 |
-
| 1.4871 | 16950 | - | 0.1481 | 0.8456 | 0.8441 |
|
814 |
-
| 1.4915 | 17000 | 0.2522 | 0.1512 | 0.8456 | 0.8437 |
|
815 |
-
| 1.4959 | 17050 | - | 0.1471 | 0.8455 | 0.8430 |
|
816 |
-
| 1.5003 | 17100 | - | 0.1397 | 0.8409 | 0.8383 |
|
817 |
-
| 1.5046 | 17150 | - | 0.1414 | 0.8427 | 0.8404 |
|
818 |
-
| 1.5090 | 17200 | - | 0.1474 | 0.8432 | 0.8420 |
|
819 |
-
| 1.5134 | 17250 | 0.2489 | 0.1499 | 0.8414 | 0.8412 |
|
820 |
-
| 1.5178 | 17300 | - | 0.1442 | 0.8390 | 0.8376 |
|
821 |
-
| 1.5222 | 17350 | - | 0.1474 | 0.8373 | 0.8370 |
|
822 |
-
| 1.5266 | 17400 | - | 0.1435 | 0.8353 | 0.8352 |
|
823 |
-
| 1.5310 | 17450 | - | 0.1461 | 0.8380 | 0.8363 |
|
824 |
-
| 1.5354 | 17500 | 0.2493 | 0.1477 | 0.8362 | 0.8353 |
|
825 |
-
| 1.5397 | 17550 | - | 0.1503 | 0.8398 | 0.8385 |
|
826 |
-
| 1.5441 | 17600 | - | 0.1474 | 0.8372 | 0.8376 |
|
827 |
-
| 1.5485 | 17650 | - | 0.1499 | 0.8408 | 0.8390 |
|
828 |
-
| 1.5529 | 17700 | - | 0.1501 | 0.8386 | 0.8369 |
|
829 |
-
| 1.5573 | 17750 | 0.2499 | 0.1474 | 0.8367 | 0.8351 |
|
830 |
-
| 1.5617 | 17800 | - | 0.1406 | 0.8380 | 0.8362 |
|
831 |
-
| 1.5661 | 17850 | - | 0.1457 | 0.8399 | 0.8396 |
|
832 |
-
| 1.5705 | 17900 | - | 0.1486 | 0.8409 | 0.8399 |
|
833 |
-
| 1.5748 | 17950 | - | 0.1493 | 0.8407 | 0.8397 |
|
834 |
-
| 1.5792 | 18000 | 0.2419 | 0.1490 | 0.8400 | 0.8386 |
|
835 |
-
| 1.5836 | 18050 | - | 0.1496 | 0.8403 | 0.8388 |
|
836 |
-
| 1.5880 | 18100 | - | 0.1509 | 0.8422 | 0.8401 |
|
837 |
-
| 1.5924 | 18150 | - | 0.1513 | 0.8433 | 0.8420 |
|
838 |
-
| 1.5968 | 18200 | - | 0.1546 | 0.8420 | 0.8408 |
|
839 |
-
| 1.6012 | 18250 | 0.2458 | 0.1529 | 0.8414 | 0.8398 |
|
840 |
-
| 1.6055 | 18300 | - | 0.1580 | 0.8414 | 0.8391 |
|
841 |
-
| 1.6099 | 18350 | - | 0.1483 | 0.8389 | 0.8363 |
|
842 |
-
| 1.6143 | 18400 | - | 0.1501 | 0.8419 | 0.8405 |
|
843 |
-
| 1.6187 | 18450 | - | 0.1488 | 0.8413 | 0.8388 |
|
844 |
-
| 1.6231 | 18500 | 0.2532 | 0.1499 | 0.8418 | 0.8410 |
|
845 |
-
| 1.6275 | 18550 | - | 0.1520 | 0.8409 | 0.8408 |
|
846 |
-
| 1.6319 | 18600 | - | 0.1521 | 0.8407 | 0.8392 |
|
847 |
-
| 1.6363 | 18650 | - | 0.1459 | 0.8402 | 0.8382 |
|
848 |
-
| 1.6406 | 18700 | - | 0.1556 | 0.8433 | 0.8427 |
|
849 |
-
| 1.6450 | 18750 | 0.24 | 0.1501 | 0.8421 | 0.8410 |
|
850 |
-
| 1.6494 | 18800 | - | 0.1485 | 0.8439 | 0.8425 |
|
851 |
-
| 1.6538 | 18850 | - | 0.1526 | 0.8412 | 0.8406 |
|
852 |
-
| 1.6582 | 18900 | - | 0.1522 | 0.8422 | 0.8425 |
|
853 |
-
| 1.6626 | 18950 | - | 0.1456 | 0.8406 | 0.8390 |
|
854 |
-
| 1.6670 | 19000 | 0.2404 | 0.1483 | 0.8412 | 0.8408 |
|
855 |
-
| 1.6713 | 19050 | - | 0.1550 | 0.8424 | 0.8428 |
|
856 |
-
| 1.6757 | 19100 | - | 0.1493 | 0.8387 | 0.8384 |
|
857 |
-
| 1.6801 | 19150 | - | 0.1523 | 0.8391 | 0.8379 |
|
858 |
-
| 1.6845 | 19200 | - | 0.1512 | 0.8366 | 0.8343 |
|
859 |
-
| 1.6889 | 19250 | 0.2401 | 0.1506 | 0.8372 | 0.8348 |
|
860 |
-
| 1.6933 | 19300 | - | 0.1457 | 0.8375 | 0.8343 |
|
861 |
-
| 1.6977 | 19350 | - | 0.1500 | 0.8403 | 0.8379 |
|
862 |
-
| 1.7021 | 19400 | - | 0.1464 | 0.8380 | 0.8367 |
|
863 |
-
| 1.7064 | 19450 | - | 0.1485 | 0.8403 | 0.8397 |
|
864 |
-
| 1.7108 | 19500 | 0.2329 | 0.1469 | 0.8450 | 0.8417 |
|
865 |
-
| 1.7152 | 19550 | - | 0.1498 | 0.8418 | 0.8391 |
|
866 |
-
| 1.7196 | 19600 | - | 0.1427 | 0.8394 | 0.8384 |
|
867 |
-
| 1.7240 | 19650 | - | 0.1493 | 0.8399 | 0.8392 |
|
868 |
-
| 1.7284 | 19700 | - | 0.1487 | 0.8423 | 0.8406 |
|
869 |
-
| 1.7328 | 19750 | 0.2397 | 0.1464 | 0.8420 | 0.8398 |
|
870 |
-
| 1.7371 | 19800 | - | 0.1511 | 0.8433 | 0.8406 |
|
871 |
-
| 1.7415 | 19850 | - | 0.1502 | 0.8391 | 0.8365 |
|
872 |
-
| 1.7459 | 19900 | - | 0.1527 | 0.8404 | 0.8386 |
|
873 |
-
| 1.7503 | 19950 | - | 0.1498 | 0.8397 | 0.8390 |
|
874 |
-
| 1.7547 | 20000 | 0.2312 | 0.1505 | 0.8413 | 0.8389 |
|
875 |
-
| 1.7591 | 20050 | - | 0.1525 | 0.8411 | 0.8396 |
|
876 |
-
| 1.7635 | 20100 | - | 0.1491 | 0.8380 | 0.8370 |
|
877 |
-
| 1.7679 | 20150 | - | 0.1431 | 0.8395 | 0.8382 |
|
878 |
-
| 1.7722 | 20200 | - | 0.1451 | 0.8365 | 0.8352 |
|
879 |
-
| 1.7766 | 20250 | 0.2319 | 0.1485 | 0.8388 | 0.8366 |
|
880 |
-
| 1.7810 | 20300 | - | 0.1499 | 0.8376 | 0.8367 |
|
881 |
-
| 1.7854 | 20350 | - | 0.1448 | 0.8364 | 0.8349 |
|
882 |
-
| 1.7898 | 20400 | - | 0.1485 | 0.8346 | 0.8328 |
|
883 |
-
| 1.7942 | 20450 | - | 0.1470 | 0.8376 | 0.8364 |
|
884 |
-
| 1.7986 | 20500 | 0.2295 | 0.1471 | 0.8386 | 0.8363 |
|
885 |
-
| 1.8029 | 20550 | - | 0.1501 | 0.8351 | 0.8329 |
|
886 |
-
| 1.8073 | 20600 | - | 0.1494 | 0.8382 | 0.8364 |
|
887 |
-
| 1.8117 | 20650 | - | 0.1489 | 0.8405 | 0.8386 |
|
888 |
-
| 1.8161 | 20700 | - | 0.1465 | 0.8381 | 0.8372 |
|
889 |
-
| 1.8205 | 20750 | 0.2408 | 0.1435 | 0.8398 | 0.8390 |
|
890 |
-
| 1.8249 | 20800 | - | 0.1498 | 0.8449 | 0.8431 |
|
891 |
-
| 1.8293 | 20850 | - | 0.1487 | 0.8431 | 0.8416 |
|
892 |
-
| 1.8337 | 20900 | - | 0.1456 | 0.8419 | 0.8394 |
|
893 |
-
| 1.8380 | 20950 | - | 0.1437 | 0.8423 | 0.8408 |
|
894 |
-
| 1.8424 | 21000 | 0.2374 | 0.1408 | 0.8425 | 0.8414 |
|
895 |
-
| 1.8468 | 21050 | - | 0.1434 | 0.8434 | 0.8418 |
|
896 |
-
| 1.8512 | 21100 | - | 0.1486 | 0.8422 | 0.8403 |
|
897 |
-
| 1.8556 | 21150 | - | 0.1467 | 0.8429 | 0.8421 |
|
898 |
-
| 1.8600 | 21200 | - | 0.1458 | 0.8409 | 0.8402 |
|
899 |
-
| 1.8644 | 21250 | 0.2385 | 0.1449 | 0.8411 | 0.8395 |
|
900 |
-
| 1.8687 | 21300 | - | 0.1415 | 0.8401 | 0.8390 |
|
901 |
-
| 1.8731 | 21350 | - | 0.1462 | 0.8417 | 0.8403 |
|
902 |
-
| 1.8775 | 21400 | - | 0.1468 | 0.8423 | 0.8403 |
|
903 |
-
| 1.8819 | 21450 | - | 0.1459 | 0.8417 | 0.8394 |
|
904 |
-
| 1.8863 | 21500 | 0.2302 | 0.1466 | 0.8396 | 0.8372 |
|
905 |
-
| 1.8907 | 21550 | - | 0.1479 | 0.8391 | 0.8363 |
|
906 |
-
| 1.8951 | 21600 | - | 0.1407 | 0.8382 | 0.8365 |
|
907 |
-
| 1.8995 | 21650 | - | 0.1462 | 0.8377 | 0.8355 |
|
908 |
-
| 1.9038 | 21700 | - | 0.1438 | 0.8348 | 0.8343 |
|
909 |
-
| 1.9082 | 21750 | 0.2383 | 0.1451 | 0.8371 | 0.8363 |
|
910 |
-
| 1.9126 | 21800 | - | 0.1448 | 0.8375 | 0.8360 |
|
911 |
-
| 1.9170 | 21850 | - | 0.1389 | 0.8383 | 0.8377 |
|
912 |
-
| 1.9214 | 21900 | - | 0.1409 | 0.8379 | 0.8367 |
|
913 |
-
| 1.9258 | 21950 | - | 0.1397 | 0.8374 | 0.8352 |
|
914 |
-
| 1.9302 | 22000 | 0.2321 | 0.1408 | 0.8405 | 0.8385 |
|
915 |
-
| 1.9345 | 22050 | - | 0.1451 | 0.8381 | 0.8363 |
|
916 |
-
| 1.9389 | 22100 | - | 0.1467 | 0.8363 | 0.8353 |
|
917 |
-
| 1.9433 | 22150 | - | 0.1459 | 0.8352 | 0.8337 |
|
918 |
-
| 1.9477 | 22200 | - | 0.1431 | 0.8382 | 0.8355 |
|
919 |
-
| 1.9521 | 22250 | 0.2282 | 0.1457 | 0.8385 | 0.8371 |
|
920 |
-
| 1.9565 | 22300 | - | 0.1475 | 0.8364 | 0.8359 |
|
921 |
-
| 1.9609 | 22350 | - | 0.1483 | 0.8370 | 0.8336 |
|
922 |
-
| 1.9653 | 22400 | - | 0.1469 | 0.8406 | 0.8373 |
|
923 |
-
| 1.9696 | 22450 | - | 0.1430 | 0.8415 | 0.8391 |
|
924 |
-
| 1.9740 | 22500 | 0.2294 | 0.1471 | 0.8417 | 0.8399 |
|
925 |
-
| 1.9784 | 22550 | - | 0.1467 | 0.8414 | 0.8413 |
|
926 |
-
| 1.9828 | 22600 | - | 0.1464 | 0.8423 | 0.8410 |
|
927 |
-
| 1.9872 | 22650 | - | 0.1475 | 0.8431 | 0.8432 |
|
928 |
-
| 1.9916 | 22700 | - | 0.1476 | 0.8450 | 0.8442 |
|
929 |
-
| 1.9960 | 22750 | 0.2242 | 0.1463 | 0.8443 | 0.8418 |
|
930 |
-
| 2.0004 | 22800 | - | 0.1472 | 0.8422 | 0.8412 |
|
931 |
-
| 2.0047 | 22850 | - | 0.1506 | 0.8452 | 0.8435 |
|
932 |
-
| 2.0091 | 22900 | - | 0.1478 | 0.8463 | 0.8432 |
|
933 |
-
| 2.0135 | 22950 | - | 0.1536 | 0.8479 | 0.8454 |
|
934 |
-
| 2.0179 | 23000 | 0.2249 | 0.1487 | 0.8453 | 0.8422 |
|
935 |
-
| 2.0223 | 23050 | - | 0.1484 | 0.8430 | 0.8410 |
|
936 |
-
| 2.0267 | 23100 | - | 0.1524 | 0.8454 | 0.8440 |
|
937 |
-
| 2.0311 | 23150 | - | 0.1475 | 0.8450 | 0.8422 |
|
938 |
-
| 2.0354 | 23200 | - | 0.1533 | 0.8460 | 0.8435 |
|
939 |
-
| 2.0398 | 23250 | 0.2165 | 0.1551 | 0.8428 | 0.8410 |
|
940 |
-
| 2.0442 | 23300 | - | 0.1507 | 0.8425 | 0.8400 |
|
941 |
-
| 2.0486 | 23350 | - | 0.1517 | 0.8427 | 0.8410 |
|
942 |
-
| 2.0530 | 23400 | - | 0.1524 | 0.8404 | 0.8391 |
|
943 |
-
| 2.0574 | 23450 | - | 0.1515 | 0.8415 | 0.8408 |
|
944 |
-
| 2.0618 | 23500 | 0.2258 | 0.1500 | 0.8392 | 0.8384 |
|
945 |
-
| 2.0662 | 23550 | - | 0.1461 | 0.8387 | 0.8362 |
|
946 |
-
| 2.0705 | 23600 | - | 0.1429 | 0.8408 | 0.8378 |
|
947 |
-
| 2.0749 | 23650 | - | 0.1473 | 0.8410 | 0.8398 |
|
948 |
-
| 2.0793 | 23700 | - | 0.1474 | 0.8415 | 0.8402 |
|
949 |
-
| 2.0837 | 23750 | 0.2309 | 0.1479 | 0.8425 | 0.8408 |
|
950 |
-
| 2.0881 | 23800 | - | 0.1493 | 0.8427 | 0.8390 |
|
951 |
-
| 2.0925 | 23850 | - | 0.1469 | 0.8419 | 0.8394 |
|
952 |
-
| 2.0969 | 23900 | - | 0.1460 | 0.8426 | 0.8406 |
|
953 |
-
| 2.1012 | 23950 | - | 0.1502 | 0.8433 | 0.8418 |
|
954 |
-
| 2.1056 | 24000 | 0.2113 | 0.1462 | 0.8423 | 0.8406 |
|
955 |
-
| 2.1100 | 24050 | - | 0.1463 | 0.8429 | 0.8398 |
|
956 |
-
| 2.1144 | 24100 | - | 0.1459 | 0.8431 | 0.8400 |
|
957 |
-
| 2.1188 | 24150 | - | 0.1417 | 0.8403 | 0.8381 |
|
958 |
-
| 2.1232 | 24200 | - | 0.1396 | 0.8376 | 0.8371 |
|
959 |
-
| 2.1276 | 24250 | 0.2132 | 0.1419 | 0.8382 | 0.8380 |
|
960 |
-
| 2.1320 | 24300 | - | 0.1444 | 0.8378 | 0.8377 |
|
961 |
-
| 2.1363 | 24350 | - | 0.1399 | 0.8334 | 0.8342 |
|
962 |
-
| 2.1407 | 24400 | - | 0.1363 | 0.8382 | 0.8361 |
|
963 |
-
| 2.1451 | 24450 | - | 0.1379 | 0.8381 | 0.8369 |
|
964 |
-
| 2.1495 | 24500 | 0.2124 | 0.1421 | 0.8403 | 0.8391 |
|
965 |
-
| 2.1539 | 24550 | - | 0.1445 | 0.8399 | 0.8391 |
|
966 |
-
| 2.1583 | 24600 | - | 0.1452 | 0.8416 | 0.8401 |
|
967 |
-
| 2.1627 | 24650 | - | 0.1426 | 0.8411 | 0.8385 |
|
968 |
-
| 2.1670 | 24700 | - | 0.1447 | 0.8424 | 0.8407 |
|
969 |
-
| 2.1714 | 24750 | 0.2058 | 0.1460 | 0.8422 | 0.8413 |
|
970 |
-
| 2.1758 | 24800 | - | 0.1434 | 0.8422 | 0.8418 |
|
971 |
-
| 2.1802 | 24850 | - | 0.1443 | 0.8438 | 0.8416 |
|
972 |
-
| 2.1846 | 24900 | - | 0.1414 | 0.8422 | 0.8405 |
|
973 |
-
| 2.1890 | 24950 | - | 0.1437 | 0.8424 | 0.8407 |
|
974 |
-
| 2.1934 | 25000 | 0.2111 | 0.1466 | 0.8401 | 0.8394 |
|
975 |
-
| 2.1978 | 25050 | - | 0.1437 | 0.8390 | 0.8377 |
|
976 |
-
| 2.2021 | 25100 | - | 0.1446 | 0.8402 | 0.8394 |
|
977 |
-
| 2.2065 | 25150 | - | 0.1457 | 0.8394 | 0.8380 |
|
978 |
-
| 2.2109 | 25200 | - | 0.1432 | 0.8406 | 0.8380 |
|
979 |
-
| 2.2153 | 25250 | 0.2013 | 0.1464 | 0.8412 | 0.8397 |
|
980 |
-
| 2.2197 | 25300 | - | 0.1499 | 0.8419 | 0.8388 |
|
981 |
-
| 2.2241 | 25350 | - | 0.1466 | 0.8425 | 0.8402 |
|
982 |
-
| 2.2285 | 25400 | - | 0.1429 | 0.8424 | 0.8397 |
|
983 |
-
| 2.2328 | 25450 | - | 0.1433 | 0.8430 | 0.8404 |
|
984 |
-
| 2.2372 | 25500 | 0.2064 | 0.1472 | 0.8410 | 0.8404 |
|
985 |
-
| 2.2416 | 25550 | - | 0.1451 | 0.8406 | 0.8386 |
|
986 |
-
| 2.2460 | 25600 | - | 0.1480 | 0.8427 | 0.8419 |
|
987 |
-
| 2.2504 | 25650 | - | 0.1507 | 0.8409 | 0.8412 |
|
988 |
-
| 2.2548 | 25700 | - | 0.1488 | 0.8407 | 0.8398 |
|
989 |
-
| 2.2592 | 25750 | 0.2084 | 0.1476 | 0.8401 | 0.8392 |
|
990 |
-
| 2.2636 | 25800 | - | 0.1478 | 0.8403 | 0.8388 |
|
991 |
-
| 2.2679 | 25850 | - | 0.1509 | 0.8420 | 0.8417 |
|
992 |
-
| 2.2723 | 25900 | - | 0.1464 | 0.8417 | 0.8396 |
|
993 |
-
| 2.2767 | 25950 | - | 0.1469 | 0.8406 | 0.8388 |
|
994 |
-
| 2.2811 | 26000 | 0.2113 | 0.1470 | 0.8422 | 0.8404 |
|
995 |
-
| 2.2855 | 26050 | - | 0.1479 | 0.8414 | 0.8411 |
|
996 |
-
| 2.2899 | 26100 | - | 0.1488 | 0.8424 | 0.8418 |
|
997 |
-
| 2.2943 | 26150 | - | 0.1508 | 0.8429 | 0.8428 |
|
998 |
-
| 2.2986 | 26200 | - | 0.1507 | 0.8425 | 0.8422 |
|
999 |
-
| 2.3030 | 26250 | 0.2045 | 0.1496 | 0.8423 | 0.8416 |
|
1000 |
-
|
1001 |
-
</details>
|
1002 |
-
|
1003 |
### Framework Versions
|
1004 |
- Python: 3.10.14
|
1005 |
- Sentence Transformers: 3.2.0
|
@@ -1009,9 +279,6 @@ You can finetune this model on your own dataset.
|
|
1009 |
- Datasets: 3.0.1
|
1010 |
- Tokenizers: 0.20.1
|
1011 |
|
1012 |
-
## Citation
|
1013 |
-
|
1014 |
-
### BibTeX
|
1015 |
|
1016 |
#### Sentence Transformers
|
1017 |
```bibtex
|
|
|
18 |
- sentence-similarity
|
19 |
- feature-extraction
|
20 |
- generated_from_trainer
|
21 |
+
- loss:CosineSimilarityLoss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
model-index:
|
23 |
+
- name: silma-embeddding-matryoshka-0.1
|
24 |
results:
|
25 |
- task:
|
26 |
type: semantic-similarity
|
27 |
name: Semantic Similarity
|
28 |
dataset:
|
29 |
+
config: ar-ar
|
30 |
+
name: MTEB STS17 (ar-ar)
|
31 |
+
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
32 |
+
split: test
|
33 |
+
type: mteb/sts17-crosslingual-sts
|
34 |
metrics:
|
35 |
- type: pearson_cosine
|
36 |
+
value: 0.8412612492708037
|
37 |
name: Pearson Cosine
|
38 |
- type: spearman_cosine
|
39 |
+
value: 0.8424703763883515
|
40 |
name: Spearman Cosine
|
41 |
- type: pearson_manhattan
|
42 |
+
value: 0.8118466522597414
|
43 |
name: Pearson Manhattan
|
44 |
- type: spearman_manhattan
|
45 |
+
value: 0.8261184409962614
|
46 |
name: Spearman Manhattan
|
47 |
- type: pearson_euclidean
|
48 |
+
value: 0.8138085140113648
|
49 |
name: Pearson Euclidean
|
50 |
- type: spearman_euclidean
|
51 |
+
value: 0.8317403450502965
|
52 |
name: Spearman Euclidean
|
53 |
- type: pearson_dot
|
54 |
+
value: 0.8412612546419626
|
55 |
name: Pearson Dot
|
56 |
- type: spearman_dot
|
57 |
+
value: 0.8425077492152536
|
58 |
name: Spearman Dot
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
- task:
|
60 |
type: semantic-similarity
|
61 |
name: Semantic Similarity
|
62 |
dataset:
|
63 |
+
config: en-ar
|
64 |
+
name: MTEB STS17 (en-ar)
|
65 |
+
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
66 |
+
split: test
|
67 |
+
type: mteb/sts17-crosslingual-sts
|
68 |
metrics:
|
69 |
- type: pearson_cosine
|
70 |
+
value: 0.43375293277885835
|
71 |
name: Pearson Cosine
|
72 |
- type: spearman_cosine
|
73 |
+
value: 0.42763149514327226
|
74 |
name: Spearman Cosine
|
75 |
- type: pearson_manhattan
|
76 |
+
value: 0.40498576814866555
|
77 |
name: Pearson Manhattan
|
78 |
- type: spearman_manhattan
|
79 |
+
value: 0.40636693141664754
|
80 |
name: Spearman Manhattan
|
81 |
- type: pearson_euclidean
|
82 |
+
value: 0.39625411905897395
|
83 |
name: Pearson Euclidean
|
84 |
- type: spearman_euclidean
|
85 |
+
value: 0.3926727199746294
|
86 |
name: Spearman Euclidean
|
87 |
- type: pearson_dot
|
88 |
+
value: 0.4337529078998193
|
89 |
name: Pearson Dot
|
90 |
- type: spearman_dot
|
91 |
+
value: 0.42763149514327226
|
92 |
name: Spearman Dot
|
93 |
+
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
94 |
---
|
95 |
|
96 |
# SentenceTransformer based on aubmindlab/bert-base-arabertv02
|
|
|
180 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
181 |
-->
|
182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
<!--
|
184 |
## Bias, Risks and Limitations
|
185 |
|
|
|
196 |
|
197 |
### Training Dataset
|
198 |
|
|
|
|
|
199 |
|
200 |
* Size: 2,279,719 training samples
|
201 |
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
|
|
270 |
- `bf16`: True
|
271 |
- `batch_sampler`: no_duplicates
|
272 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
### Framework Versions
|
274 |
- Python: 3.10.14
|
275 |
- Sentence Transformers: 3.2.0
|
|
|
279 |
- Datasets: 3.0.1
|
280 |
- Tokenizers: 0.20.1
|
281 |
|
|
|
|
|
|
|
282 |
|
283 |
#### Sentence Transformers
|
284 |
```bibtex
|