Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## Evaluation Script
|
| 2 |
+
```
|
| 3 |
+
"""Evaluation script for the custom dataset."""
|
| 4 |
+
|
| 5 |
+
from pylate import evaluation, indexes, models, retrieve
|
| 6 |
+
|
| 7 |
+
model = models.ColBERT(
|
| 8 |
+
model_name_or_path="sigridjineth/ModernBERT-Korean-ColBERT-preview-v1",
|
| 9 |
+
document_length=300,
|
| 10 |
+
)
|
| 11 |
+
index = indexes.Voyager(override=True)
|
| 12 |
+
retriever = retrieve.ColBERT(index=index)
|
| 13 |
+
|
| 14 |
+
documents, queries, qrels = evaluation.load_custom_dataset(
|
| 15 |
+
"datasets/miracl_ko", split="dev"
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
documents_embeddings = model.encode(
|
| 19 |
+
sentences=[document["text"] for document in documents],
|
| 20 |
+
batch_size=32,
|
| 21 |
+
is_query=False,
|
| 22 |
+
show_progress_bar=True,
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
index.add_documents(
|
| 26 |
+
documents_ids=[document["id"] for document in documents],
|
| 27 |
+
documents_embeddings=documents_embeddings,
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
queries_embeddings = model.encode(
|
| 31 |
+
sentences=queries,
|
| 32 |
+
batch_size=32,
|
| 33 |
+
is_query=True,
|
| 34 |
+
show_progress_bar=True,
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
scores = retriever.retrieve(queries_embeddings=queries_embeddings, k=100)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
evaluation_scores = evaluation.evaluate(
|
| 41 |
+
scores=scores,
|
| 42 |
+
qrels=qrels,
|
| 43 |
+
queries=queries,
|
| 44 |
+
metrics=["map", "ndcg@10", "ndcg@100", "recall@10", "recall@100"],
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
print(evaluation_scores)
|
| 48 |
+
```
|