Update README.md
Browse files
README.md
CHANGED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Fine-tuned ESM2 Protein Classifier (pdac_pred_llm)
|
2 |
+
|
3 |
+
This repository contains a fine-tuned ESM2 model for protein sequence classification, specifically the model uploaded to `shubhamc-iiitd/pdac_pred_llm`. The model is trained to predict binary labels based on protein sequences.
|
4 |
+
|
5 |
+
## Model Description
|
6 |
+
|
7 |
+
- **Base Model:** ESM2-t33-650M-UR50D (Fine-tuned)
|
8 |
+
- **Fine-tuning Task:** Binary protein classification.
|
9 |
+
- **Architecture:** The model consists of the ESM2 backbone with a linear classification head.
|
10 |
+
- **Input:** Protein amino acid sequences.
|
11 |
+
- **Output:** Binary classification labels (0 or 1).
|
12 |
+
|
13 |
+
## Repository Contents
|
14 |
+
|
15 |
+
- `pytorch_model.bin`: The trained model weights.
|
16 |
+
- `alphabet.bin`: The ESM2 alphabet (used as a tokenizer).
|
17 |
+
- `config.json`: Configuration file for the model.
|
18 |
+
- `README.md`: This file.
|
19 |
+
|
20 |
+
## Usage
|
21 |
+
|
22 |
+
### Installation
|
23 |
+
|
24 |
+
1. Install the required libraries:
|
25 |
+
|
26 |
+
```bash
|
27 |
+
pip install torch esm biopython huggingface_hub
|
28 |
+
```
|
29 |
+
|
30 |
+
### Loading the Model from Hugging Face
|
31 |
+
|
32 |
+
```python
|
33 |
+
import torch
|
34 |
+
import torch.nn as nn
|
35 |
+
import esm
|
36 |
+
from huggingface_hub import hf_hub_download
|
37 |
+
import json
|
38 |
+
|
39 |
+
# Define the model architecture (same as during training)
|
40 |
+
class ProteinClassifier(nn.Module):
|
41 |
+
def __init__(self, esm_model, embedding_dim, num_classes):
|
42 |
+
super(ProteinClassifier, self).__init__()
|
43 |
+
self.esm_model = esm_model
|
44 |
+
self.fc = nn.Linear(embedding_dim, num_classes)
|
45 |
+
|
46 |
+
def forward(self, tokens):
|
47 |
+
with torch.no_grad():
|
48 |
+
results = self.esm_model(tokens, repr_layers=[33])
|
49 |
+
embeddings = results["representations"][33].mean(1)
|
50 |
+
output = self.fc(embeddings)
|
51 |
+
return output
|
52 |
+
|
53 |
+
# Download the model files from Hugging Face
|
54 |
+
repo_id = "shubhamc-iiitd/pdac_pred_llm"
|
55 |
+
model_weights_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin")
|
56 |
+
alphabet_path = hf_hub_download(repo_id=repo_id, filename="alphabet.bin")
|
57 |
+
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
|
58 |
+
|
59 |
+
# Load the ESM2 model (used as backbone)
|
60 |
+
model, alphabet = esm.pretrained.esm2_t33_650M_UR50D()
|
61 |
+
|
62 |
+
# Load the configuration
|
63 |
+
with open(config_path, 'r') as f:
|
64 |
+
config = json.load(f)
|
65 |
+
|
66 |
+
# Initialize the classifier
|
67 |
+
classifier = ProteinClassifier(model, embedding_dim=config['embedding_dim'], num_classes=config['num_classes'])
|
68 |
+
|
69 |
+
# Load the model weights
|
70 |
+
classifier.load_state_dict(torch.load(model_weights_path))
|
71 |
+
classifier.eval()
|
72 |
+
|
73 |
+
# Load the alphabet
|
74 |
+
alphabet = torch.load(alphabet_path)
|
75 |
+
batch_converter = alphabet.get_batch_converter()
|
76 |
+
|
77 |
+
#Move models to device if needed
|
78 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
79 |
+
model = model.to(device)
|
80 |
+
```
|