--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: t5-small-ret-conceptnet2 results: [] --- # t5-small-ret-conceptnet2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1709 - Acc: {'accuracy': 0.8700980392156863} - Precision: {'precision': 0.811340206185567} - Recall: {'recall': 0.9644607843137255} - F1: {'f1': 0.8812989921612542} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------------------:|:------------------------------:|:--------------------------:| | 0.1989 | 1.0 | 721 | 0.1709 | {'accuracy': 0.8700980392156863} | {'precision': 0.811340206185567} | {'recall': 0.9644607843137255} | {'f1': 0.8812989921612542} | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2