shreyansjain commited on
Commit
4be6824
·
1 Parent(s): b66201c

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1596.41 +/- 546.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47dd3df424f678b663e6a36dbf98240656ac4bfbd51eacc3697110473971d0db
3
+ size 129231
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2858b98670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2858b98700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2858b98790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2858b98820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2858b988b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2858b98940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2858b989d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2858b98a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2858b98af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2858b98b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2858b98c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2858b98ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f2858b99c80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1682165815768489271,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOnTKj8/uAo/DiD0PmNVpT8CgwFAquhtPzFEFz5mtmS/X8QCP6Mq279h4lC/bLLAPmjmyD+Ep5A+GPRGP62qhjwpX6k/bnPIvctUY769LaC/u3IUv4DkBsDNbJg/7G7UvKMPiL8mQAA/NnfTv4Z0hj9oicI/S5/2v9a3y79MY4W8S1SCvzr6Nj0a8Zy/Kc2OvwZ7Xz/OKM++PuI2QNAjuLwS0Ke//JF9PfQcwD4ePyPAaiTrvwejT71rpQW++BGUO2HQNkA7mcw/ySZaPtzff8A/1XA/8n//v+P0Gj+gtXO/YvTtPif2Kr8Q7aQ+oyL8P4nDNbzLdU4/nkGivqrOhb6kpwa/hPPGP4EfZb/Nz1I9teK3vWjyM0Az5D0+004EQCA8d78TvDJAw6huPuXMzj1Qezi/itZOPyVWZz9wr3w/ow+IvyZAAD82d9O/hnSGP9SUkj+NcgI/D2j5Pp8/pD+d0Aw+xb4CQENtHEA7tgi/U0svv6Kwjr6LN3w/6Csyv+hBbT6CAw5AdCgSwPOvmj8RKwTACVeXP/oLNT/YRTc9Cr19vpzX+j5fDLe8uQwGP6MPiL8mQAA/4/QaP4Z0hj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAawA82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAW60mPQAAAADAE9m/AAAAAIWD4boAAAAAvFX3PwAAAABL4cg9AAAAADEK2T8AAAAAa3ohvQAAAACBCe6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAljeuNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJrQ770AAAAAjQH6vwAAAABdiM89AAAAACfH6T8AAAAAZuTsvAAAAAAx5/c/AAAAACVq1rwAAAAA4CnkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMhrDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDh85m9AAAAACw27L8AAAAAGu6YvQAAAACpXPQ/AAAAAPclsj0AAAAA4w/jPwAAAACgMAE9AAAAAHcf/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnLPY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACABqAPvgAAAABxSOS/AAAAAPP/m70AAAAATs/yPwAAAACIWgY+AAAAAFQV/T8AAAAAZ6sAvgAAAAA3r9q/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ26UR28qWmMAWyUTegDjAF0lEdAqbrkExIrfHV9lChoBkdAlmBvkmx+rmgHTegDaAhHQKm8A6NEPUd1fZQoaAZHQJktbq0MPSVoB03oA2gIR0Cpwc7/n4fwdX2UKGgGR0CdzsBkZrHmaAdN6ANoCEdAqcLavs7dSHV9lChoBkdAn2CtH2AXmGgHTegDaAhHQKnHG82aUiZ1fZQoaAZHQJtX171Iy0toB03oA2gIR0CpyEcjAzpHdX2UKGgGR0CeSfmfoRqXaAdN6ANoCEdAqc9h9AooeHV9lChoBkdAmOR8g+yJK2gHTegDaAhHQKnRFFOwgT11fZQoaAZHQIWrjMvAXVNoB03oA2gIR0Cp1lVZ9uxbdX2UKGgGR0CXOnyXlbNbaAdN6ANoCEdAqddzkZJkG3V9lChoBkdAjgmM6zVtoGgHTegDaAhHQKndSHRCx/x1fZQoaAZHQJXjGlhw2l5oB03oA2gIR0Cp3lK7yxzJdX2UKGgGR0CbXq+WWyC4aAdN6ANoCEdAqeJ+OIZZS3V9lChoBkdAnEr83qAz6GgHTegDaAhHQKnjl4L1EmZ1fZQoaAZHQJn0kggX/HZoB03oA2gIR0Cp6dMMy8BddX2UKGgGR0Ccq4rgflp5aAdN6ANoCEdAqetfiR4hU3V9lChoBkdAm4GgRwqAjWgHTegDaAhHQKnxYlD4QBh1fZQoaAZHQJ16UbtJFspoB03oA2gIR0Cp8nmahHskdX2UKGgGR0CbgWN0NjLCaAdN6ANoCEdAqfgnTw2ETXV9lChoBkdAnUSrDuSfUWgHTegDaAhHQKn5Mp/gBLh1fZQoaAZHQJ6b/5O8CgdoB03oA2gIR0Cp/WrdN34cdX2UKGgGR0CbNifg75mAaAdN6ANoCEdAqf6BufmLcnV9lChoBkdAmoAP+GXXy2gHTegDaAhHQKoEM3MINVl1fZQoaAZHQJjilF2FFlVoB03oA2gIR0CqBZ0euFHsdX2UKGgGR0CafD9lEqlQaAdN6ANoCEdAqgwUneBQN3V9lChoBkdAl9DnBtUGV2gHTegDaAhHQKoNpXJ5miB1fZQoaAZHQJfeFTcZccFoB03oA2gIR0CqE0k92X9jdX2UKGgGR0CWsaryDqW1aAdN6ANoCEdAqhRe912aD3V9lChoBkdAlMgMqz7di2gHTegDaAhHQKoYjw+dK/V1fZQoaAZHQJNuAhllK9RoB03oA2gIR0CqGautGNJfdX2UKGgGR0CU+3r+o99uaAdN6ANoCEdAqh9iyjYZmHV9lChoBkdAmZfohpxm02gHTegDaAhHQKogcW1MM7V1fZQoaAZHQJDnO3azu4RoB03oA2gIR0CqJlt4JNTMdX2UKGgGR0CYFab0e2d/aAdN6ANoCEdAqigcPFvQ4XV9lChoBkdAmgp5OzposmgHTegDaAhHQKounDVH4Gl1fZQoaAZHQJuZy3trsSloB03oA2gIR0CqL7PTgEU1dX2UKGgGR0CaWEbDMvAXaAdN6ANoCEdAqjQCrcTJyXV9lChoBkdAmoP6dhAnlWgHTegDaAhHQKo1IEidJ8R1fZQoaAZHQJqYybx3FDRoB03oA2gIR0CqOut9hJAddX2UKGgGR0CQQAemNzbOaAdN6ANoCEdAqjv4xtYSx3V9lChoBkdAklj5xR2r4mgHTegDaAhHQKpBJoRIz311fZQoaAZHQJC0HMbFS89oB03oA2gIR0CqQuGVzIV/dX2UKGgGR0CZKnIT4+KTaAdN6ANoCEdAqkoLihnJ1nV9lChoBkdAmSZDOs1baGgHTegDaAhHQKpLFbEgntx1fZQoaAZHQJN3NrzoUztoB03oA2gIR0CqTzDWbwz+dX2UKGgGR0CVkHGCI1tPaAdN6ANoCEdAqlBHH3lCC3V9lChoBkdAlwcqoZQ53mgHTegDaAhHQKpWD9JjDsN1fZQoaAZHQJlb17RfF75oB03oA2gIR0CqVyOWa+ewdX2UKGgGR0CF+uFHrhR7aAdN6ANoCEdAqluFsHjZMHV9lChoBkdAmYQ01ZTya2gHTegDaAhHQKpdG065oXd1fZQoaAZHQJz4uFTNt65oB03oA2gIR0CqZSZKWcBmdX2UKGgGR0CTwJIxQBPsaAdN6ANoCEdAqmY4OUdJa3V9lChoBkdAlnQ7ofSx7mgHTegDaAhHQKpqX6Q/5cl1fZQoaAZHQJPYjgwXZXdoB03oA2gIR0Cqa3ziKiwjdX2UKGgGR0Cc+ni2lVLjaAdN6ANoCEdAqnEPddmg8XV9lChoBkdAmUXxrrPdEmgHTegDaAhHQKpyF0I1LrZ1fZQoaAZHQJuPAkWykbhoB03oA2gIR0Cqdj3pGFzudX2UKGgGR0CdeA4agmJFaAdN6ANoCEdAqndS33Hq/3V9lChoBkdAnNFuhK15SmgHTegDaAhHQKp/up5u63B1fZQoaAZHQJUBK2nbZe1oB03oA2gIR0CqgQHpr1ujdX2UKGgGR0CXUbD0Dlo2aAdN6ANoCEdAqoUwzrNW2nV9lChoBkdAmrePq9oN/mgHTegDaAhHQKqGQ7Omixp1fZQoaAZHQJkrWFev6j5oB03oA2gIR0Cqi+5GKAJ+dX2UKGgGR0CYrSunuRcNaAdN6ANoCEdAqo0CT4cm0HV9lChoBkdAlifK9oN/fGgHTegDaAhHQKqRLlwLmZF1fZQoaAZHQJI3TzqbBoFoB03oA2gIR0Cqkk5R0lqrdX2UKGgGR0CU3pHO8kD7aAdN6ANoCEdAqpnNQbdadXV9lChoBkdAlq9rdJrckGgHTegDaAhHQKqbdwz+FUR1fZQoaAZHQJJnUPvrnkloB03oA2gIR0CqoD7sv7FbdX2UKGgGR0CWZaKu0TlDaAdN6ANoCEdAqqFctTUAk3V9lChoBkdAmynHggow22gHTegDaAhHQKqnDZlnRLN1fZQoaAZHQJohVXhfjS5oB03oA2gIR0CqqB6TfR/mdX2UKGgGR0CbjXGmk30gaAdN6ANoCEdAqqxQwmE5AHV9lChoBkdAmaxBZlnRLWgHTegDaAhHQKqtae3hGYt1fZQoaAZHQJtM4zTF2mpoB03oA2gIR0Cqs/ZKnNxEdX2UKGgGR0Cca+ipNsWPaAdN6ANoCEdAqrWVAZ88cXV9lChoBkdAmFKxfF72MGgHTegDaAhHQKq7Pz9S/CZ1fZQoaAZHQJjHm0AtFrloB03oA2gIR0CqvF0sWfsedX2UKGgGR0CaA5W1MM7VaAdN6ANoCEdAqsIK4Ds+mnV9lChoBkdAmt7cYqG1yGgHTegDaAhHQKrDEIt16mh1fZQoaAZHQJ1gSoP07KdoB03oA2gIR0CqxzpCa7VbdX2UKGgGR0CdQ/CV8kUsaAdN6ANoCEdAqshbX+VC5XV9lChoBkdAmr4qef7Jn2gHTegDaAhHQKrOMACGN711fZQoaAZHQJx8H1h9b5doB03oA2gIR0Cqz6xoRIz4dX2UKGgGR0CdeLdhAnlXaAdN6ANoCEdAqtYRWHUMHHV9lChoBkdAmj9u7g88tGgHTegDaAhHQKrXSlEZzgd1fZQoaAZHQJvd01AJLM9oB03oA2gIR0Cq3OwCKaXsdX2UKGgGR0CbesXizcASaAdN6ANoCEdAqt3yeiBXjnV9lChoBkdAnlZXWSU1RGgHTegDaAhHQKriI90zTF51fZQoaAZHQJqIQ93bEgpoB03oA2gIR0Cq4z9dE9dNdX2UKGgGR0CeyV+Jxeb/aAdN6ANoCEdAqujx4Uvf0nV9lChoBkdAmwp57sv7FmgHTegDaAhHQKrp+veP7vZ1fZQoaAZHQJxAmV0Lc9JoB03oA2gIR0Cq8CbuDzy0dX2UKGgGR0CWP4XLeQ+2aAdN6ANoCEdAqvHkUGmk33V9lChoBkdAmgJFa8pTdmgHTegDaAhHQKr39dJJ5FB1fZQoaAZHQJbaDoW56MRoB03oA2gIR0Cq+QaC17Y1dX2UKGgGR0CRCFVkMCtBaAdN6ANoCEdAqv1MfRu0kXV9lChoBkdAneG8XFcY7GgHTegDaAhHQKr+Y9EkSmJ1fZQoaAZHQJsWLC66J69oB03oA2gIR0CrBBFGoaUBdX2UKGgGR0CWm19bor4GaAdN6ANoCEdAqwUsySFGonVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9eecfefe961c17e71d739e07cf74cf8a4dd9d3347a1752b184df51c8334cb96
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a6a605b85ea6a80dc1ce242dab4f45121ef652d898e009a16999f593cdb17cf
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2858b98670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2858b98700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2858b98790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2858b98820>", "_build": "<function ActorCriticPolicy._build at 0x7f2858b988b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2858b98940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2858b989d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2858b98a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2858b98af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2858b98b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2858b98c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2858b98ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2858b99c80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682165815768489271, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOnTKj8/uAo/DiD0PmNVpT8CgwFAquhtPzFEFz5mtmS/X8QCP6Mq279h4lC/bLLAPmjmyD+Ep5A+GPRGP62qhjwpX6k/bnPIvctUY769LaC/u3IUv4DkBsDNbJg/7G7UvKMPiL8mQAA/NnfTv4Z0hj9oicI/S5/2v9a3y79MY4W8S1SCvzr6Nj0a8Zy/Kc2OvwZ7Xz/OKM++PuI2QNAjuLwS0Ke//JF9PfQcwD4ePyPAaiTrvwejT71rpQW++BGUO2HQNkA7mcw/ySZaPtzff8A/1XA/8n//v+P0Gj+gtXO/YvTtPif2Kr8Q7aQ+oyL8P4nDNbzLdU4/nkGivqrOhb6kpwa/hPPGP4EfZb/Nz1I9teK3vWjyM0Az5D0+004EQCA8d78TvDJAw6huPuXMzj1Qezi/itZOPyVWZz9wr3w/ow+IvyZAAD82d9O/hnSGP9SUkj+NcgI/D2j5Pp8/pD+d0Aw+xb4CQENtHEA7tgi/U0svv6Kwjr6LN3w/6Csyv+hBbT6CAw5AdCgSwPOvmj8RKwTACVeXP/oLNT/YRTc9Cr19vpzX+j5fDLe8uQwGP6MPiL8mQAA/4/QaP4Z0hj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAawA82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAW60mPQAAAADAE9m/AAAAAIWD4boAAAAAvFX3PwAAAABL4cg9AAAAADEK2T8AAAAAa3ohvQAAAACBCe6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAljeuNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJrQ770AAAAAjQH6vwAAAABdiM89AAAAACfH6T8AAAAAZuTsvAAAAAAx5/c/AAAAACVq1rwAAAAA4CnkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMhrDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDh85m9AAAAACw27L8AAAAAGu6YvQAAAACpXPQ/AAAAAPclsj0AAAAA4w/jPwAAAACgMAE9AAAAAHcf/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnLPY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACABqAPvgAAAABxSOS/AAAAAPP/m70AAAAATs/yPwAAAACIWgY+AAAAAFQV/T8AAAAAZ6sAvgAAAAA3r9q/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ26UR28qWmMAWyUTegDjAF0lEdAqbrkExIrfHV9lChoBkdAlmBvkmx+rmgHTegDaAhHQKm8A6NEPUd1fZQoaAZHQJktbq0MPSVoB03oA2gIR0Cpwc7/n4fwdX2UKGgGR0CdzsBkZrHmaAdN6ANoCEdAqcLavs7dSHV9lChoBkdAn2CtH2AXmGgHTegDaAhHQKnHG82aUiZ1fZQoaAZHQJtX171Iy0toB03oA2gIR0CpyEcjAzpHdX2UKGgGR0CeSfmfoRqXaAdN6ANoCEdAqc9h9AooeHV9lChoBkdAmOR8g+yJK2gHTegDaAhHQKnRFFOwgT11fZQoaAZHQIWrjMvAXVNoB03oA2gIR0Cp1lVZ9uxbdX2UKGgGR0CXOnyXlbNbaAdN6ANoCEdAqddzkZJkG3V9lChoBkdAjgmM6zVtoGgHTegDaAhHQKndSHRCx/x1fZQoaAZHQJXjGlhw2l5oB03oA2gIR0Cp3lK7yxzJdX2UKGgGR0CbXq+WWyC4aAdN6ANoCEdAqeJ+OIZZS3V9lChoBkdAnEr83qAz6GgHTegDaAhHQKnjl4L1EmZ1fZQoaAZHQJn0kggX/HZoB03oA2gIR0Cp6dMMy8BddX2UKGgGR0Ccq4rgflp5aAdN6ANoCEdAqetfiR4hU3V9lChoBkdAm4GgRwqAjWgHTegDaAhHQKnxYlD4QBh1fZQoaAZHQJ16UbtJFspoB03oA2gIR0Cp8nmahHskdX2UKGgGR0CbgWN0NjLCaAdN6ANoCEdAqfgnTw2ETXV9lChoBkdAnUSrDuSfUWgHTegDaAhHQKn5Mp/gBLh1fZQoaAZHQJ6b/5O8CgdoB03oA2gIR0Cp/WrdN34cdX2UKGgGR0CbNifg75mAaAdN6ANoCEdAqf6BufmLcnV9lChoBkdAmoAP+GXXy2gHTegDaAhHQKoEM3MINVl1fZQoaAZHQJjilF2FFlVoB03oA2gIR0CqBZ0euFHsdX2UKGgGR0CafD9lEqlQaAdN6ANoCEdAqgwUneBQN3V9lChoBkdAl9DnBtUGV2gHTegDaAhHQKoNpXJ5miB1fZQoaAZHQJfeFTcZccFoB03oA2gIR0CqE0k92X9jdX2UKGgGR0CWsaryDqW1aAdN6ANoCEdAqhRe912aD3V9lChoBkdAlMgMqz7di2gHTegDaAhHQKoYjw+dK/V1fZQoaAZHQJNuAhllK9RoB03oA2gIR0CqGautGNJfdX2UKGgGR0CU+3r+o99uaAdN6ANoCEdAqh9iyjYZmHV9lChoBkdAmZfohpxm02gHTegDaAhHQKogcW1MM7V1fZQoaAZHQJDnO3azu4RoB03oA2gIR0CqJlt4JNTMdX2UKGgGR0CYFab0e2d/aAdN6ANoCEdAqigcPFvQ4XV9lChoBkdAmgp5OzposmgHTegDaAhHQKounDVH4Gl1fZQoaAZHQJuZy3trsSloB03oA2gIR0CqL7PTgEU1dX2UKGgGR0CaWEbDMvAXaAdN6ANoCEdAqjQCrcTJyXV9lChoBkdAmoP6dhAnlWgHTegDaAhHQKo1IEidJ8R1fZQoaAZHQJqYybx3FDRoB03oA2gIR0CqOut9hJAddX2UKGgGR0CQQAemNzbOaAdN6ANoCEdAqjv4xtYSx3V9lChoBkdAklj5xR2r4mgHTegDaAhHQKpBJoRIz311fZQoaAZHQJC0HMbFS89oB03oA2gIR0CqQuGVzIV/dX2UKGgGR0CZKnIT4+KTaAdN6ANoCEdAqkoLihnJ1nV9lChoBkdAmSZDOs1baGgHTegDaAhHQKpLFbEgntx1fZQoaAZHQJN3NrzoUztoB03oA2gIR0CqTzDWbwz+dX2UKGgGR0CVkHGCI1tPaAdN6ANoCEdAqlBHH3lCC3V9lChoBkdAlwcqoZQ53mgHTegDaAhHQKpWD9JjDsN1fZQoaAZHQJlb17RfF75oB03oA2gIR0CqVyOWa+ewdX2UKGgGR0CF+uFHrhR7aAdN6ANoCEdAqluFsHjZMHV9lChoBkdAmYQ01ZTya2gHTegDaAhHQKpdG065oXd1fZQoaAZHQJz4uFTNt65oB03oA2gIR0CqZSZKWcBmdX2UKGgGR0CTwJIxQBPsaAdN6ANoCEdAqmY4OUdJa3V9lChoBkdAlnQ7ofSx7mgHTegDaAhHQKpqX6Q/5cl1fZQoaAZHQJPYjgwXZXdoB03oA2gIR0Cqa3ziKiwjdX2UKGgGR0Cc+ni2lVLjaAdN6ANoCEdAqnEPddmg8XV9lChoBkdAmUXxrrPdEmgHTegDaAhHQKpyF0I1LrZ1fZQoaAZHQJuPAkWykbhoB03oA2gIR0Cqdj3pGFzudX2UKGgGR0CdeA4agmJFaAdN6ANoCEdAqndS33Hq/3V9lChoBkdAnNFuhK15SmgHTegDaAhHQKp/up5u63B1fZQoaAZHQJUBK2nbZe1oB03oA2gIR0CqgQHpr1ujdX2UKGgGR0CXUbD0Dlo2aAdN6ANoCEdAqoUwzrNW2nV9lChoBkdAmrePq9oN/mgHTegDaAhHQKqGQ7Omixp1fZQoaAZHQJkrWFev6j5oB03oA2gIR0Cqi+5GKAJ+dX2UKGgGR0CYrSunuRcNaAdN6ANoCEdAqo0CT4cm0HV9lChoBkdAlifK9oN/fGgHTegDaAhHQKqRLlwLmZF1fZQoaAZHQJI3TzqbBoFoB03oA2gIR0Cqkk5R0lqrdX2UKGgGR0CU3pHO8kD7aAdN6ANoCEdAqpnNQbdadXV9lChoBkdAlq9rdJrckGgHTegDaAhHQKqbdwz+FUR1fZQoaAZHQJJnUPvrnkloB03oA2gIR0CqoD7sv7FbdX2UKGgGR0CWZaKu0TlDaAdN6ANoCEdAqqFctTUAk3V9lChoBkdAmynHggow22gHTegDaAhHQKqnDZlnRLN1fZQoaAZHQJohVXhfjS5oB03oA2gIR0CqqB6TfR/mdX2UKGgGR0CbjXGmk30gaAdN6ANoCEdAqqxQwmE5AHV9lChoBkdAmaxBZlnRLWgHTegDaAhHQKqtae3hGYt1fZQoaAZHQJtM4zTF2mpoB03oA2gIR0Cqs/ZKnNxEdX2UKGgGR0Cca+ipNsWPaAdN6ANoCEdAqrWVAZ88cXV9lChoBkdAmFKxfF72MGgHTegDaAhHQKq7Pz9S/CZ1fZQoaAZHQJjHm0AtFrloB03oA2gIR0CqvF0sWfsedX2UKGgGR0CaA5W1MM7VaAdN6ANoCEdAqsIK4Ds+mnV9lChoBkdAmt7cYqG1yGgHTegDaAhHQKrDEIt16mh1fZQoaAZHQJ1gSoP07KdoB03oA2gIR0CqxzpCa7VbdX2UKGgGR0CdQ/CV8kUsaAdN6ANoCEdAqshbX+VC5XV9lChoBkdAmr4qef7Jn2gHTegDaAhHQKrOMACGN711fZQoaAZHQJx8H1h9b5doB03oA2gIR0Cqz6xoRIz4dX2UKGgGR0CdeLdhAnlXaAdN6ANoCEdAqtYRWHUMHHV9lChoBkdAmj9u7g88tGgHTegDaAhHQKrXSlEZzgd1fZQoaAZHQJvd01AJLM9oB03oA2gIR0Cq3OwCKaXsdX2UKGgGR0CbesXizcASaAdN6ANoCEdAqt3yeiBXjnV9lChoBkdAnlZXWSU1RGgHTegDaAhHQKriI90zTF51fZQoaAZHQJqIQ93bEgpoB03oA2gIR0Cq4z9dE9dNdX2UKGgGR0CeyV+Jxeb/aAdN6ANoCEdAqujx4Uvf0nV9lChoBkdAmwp57sv7FmgHTegDaAhHQKrp+veP7vZ1fZQoaAZHQJxAmV0Lc9JoB03oA2gIR0Cq8CbuDzy0dX2UKGgGR0CWP4XLeQ+2aAdN6ANoCEdAqvHkUGmk33V9lChoBkdAmgJFa8pTdmgHTegDaAhHQKr39dJJ5FB1fZQoaAZHQJbaDoW56MRoB03oA2gIR0Cq+QaC17Y1dX2UKGgGR0CRCFVkMCtBaAdN6ANoCEdAqv1MfRu0kXV9lChoBkdAneG8XFcY7GgHTegDaAhHQKr+Y9EkSmJ1fZQoaAZHQJsWLC66J69oB03oA2gIR0CrBBFGoaUBdX2UKGgGR0CWm19bor4GaAdN6ANoCEdAqwUsySFGonVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b8d0dfbdf18beba06df9af1ec8c94f271a5a6811880b5e6011d6ad79d017350
3
+ size 1142713
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1596.4104289947893, "std_reward": 546.0938893861012, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-22T13:22:27.778512"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5658b27a43f0c3bcbda0100c81bfc5600648a784f6bdd5752bdb186b88e2acc8
3
+ size 2487