File size: 1,458 Bytes
3ea3464 8801266 7bf177e 8801266 3ea3464 7bf177e 3ea3464 7bf177e 8801266 7bf177e 3ea3464 7bf177e 3ea3464 7bf177e 3ea3464 7bf177e 3ea3464 7bf177e 3ea3464 7bf177e 3ea3464 7bf177e 8801266 7bf177e 3ea3464 7bf177e 3ea3464 7bf177e 8801266 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
library_name: transformers
license: apache-2.0
base_model: google/t5-efficient-tiny-nh8
tags:
- generated_from_trainer
model-index:
- name: t5-efficient-tiny-nh8-summarizer
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-efficient-tiny-nh8-summarizer
This model is a fine-tuned version of [google/t5-efficient-tiny-nh8](https://huggingface.co/google/t5-efficient-tiny-nh8) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 6.4709
- eval_model_preparation_time: 0.0027
- eval_runtime: 0.8703
- eval_samples_per_second: 114.907
- eval_steps_per_second: 17.236
- step: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.000000000000001e-05
- train_batch_size: 7
- eval_batch_size: 7
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.47.0
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.21.0
|