File size: 1,259 Bytes
3ea3464
ddaab42
77d476a
 
3ea3464
7bf177e
 
 
 
3ea3464
 
7bf177e
 
 
 
 
77d476a
7bf177e
 
 
77d476a
7bf177e
 
3ea3464
77d476a
3ea3464
7bf177e
3ea3464
77d476a
3ea3464
7bf177e
3ea3464
7bf177e
3ea3464
7bf177e
77d476a
9f7057c
 
7bf177e
 
 
 
 
3ea3464
1513fd3
 
 
 
7bf177e
3ea3464
77d476a
7bf177e
 
 
77d476a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
base_model: google/t5-efficient-tiny-nh8
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: t5-efficient-tiny-nh8-summarizer
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-efficient-tiny-nh8-summarizer

This model is a fine-tuned version of [google/t5-efficient-tiny-nh8](https://huggingface.co/google/t5-efficient-tiny-nh8) on an unknown dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 63
- eval_batch_size: 63
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.21.0