|
import torch |
|
import torch.nn as nn |
|
from transformers import PreTrainedModel |
|
from collections import OrderedDict |
|
from transformers.modeling_outputs import SequenceClassifierOutput |
|
from typing import List, Optional, Tuple, Union |
|
from .configuration import MultiLabelClassifierConfig |
|
|
|
class MultiLabelClassifierModel(PreTrainedModel): |
|
config_class = MultiLabelClassifierConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.nlp_model = torch.hub.load('huggingface/pytorch-transformers', 'model', config.transformer_name) |
|
self.rnn = nn.GRU(config.embedding_dim, |
|
config.hidden_dim, |
|
num_layers = config.num_layers, |
|
bidirectional = config.bidirectional, |
|
batch_first = True, |
|
dropout = 0 if config.num_layers < 2 else config.dropout) |
|
self.dropout = nn.Dropout(config.dropout) |
|
self.out = nn.Linear(config.hidden_dim * 2 if config.bidirectional else config.hidden_dim, config.num_classes) |
|
|
|
def forward(self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
)-> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: |
|
output = self.nlp_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
_, hidden = self.rnn(output['last_hidden_state']) |
|
if self.rnn.bidirectional: |
|
hidden = self.dropout(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1)) |
|
else: |
|
hidden = self.dropout(hidden[-1,:,:]) |
|
|
|
logits = self.out(hidden) |
|
return SequenceClassifierOutput( |
|
logits=logits, |
|
hidden_states=output.hidden_states, |
|
attentions=output.attentions, |
|
) |