grez72's picture
add model
cc10c23
raw
history blame
2.53 kB
import torch
import torch.nn as nn
from transformers import PreTrainedModel
from collections import OrderedDict
from transformers.modeling_outputs import SequenceClassifierOutput
from typing import List, Optional, Tuple, Union
from .configuration import MultiLabelClassifierConfig
class MultiLabelClassifierModel(PreTrainedModel):
config_class = MultiLabelClassifierConfig
def __init__(self, config):
super().__init__(config)
self.nlp_model = torch.hub.load('huggingface/pytorch-transformers', 'model', config.transformer_name)
self.rnn = nn.GRU(config.embedding_dim,
config.hidden_dim,
num_layers = config.num_layers,
bidirectional = config.bidirectional,
batch_first = True,
dropout = 0 if config.num_layers < 2 else config.dropout)
self.dropout = nn.Dropout(config.dropout)
self.out = nn.Linear(config.hidden_dim * 2 if config.bidirectional else config.hidden_dim, config.num_classes)
def forward(self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
)-> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
output = self.nlp_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
_, hidden = self.rnn(output['last_hidden_state'])
if self.rnn.bidirectional:
hidden = self.dropout(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1))
else:
hidden = self.dropout(hidden[-1,:,:])
logits = self.out(hidden)
return SequenceClassifierOutput(
logits=logits,
hidden_states=output.hidden_states,
attentions=output.attentions,
)