Update README.md
Browse files
README.md
CHANGED
@@ -145,10 +145,10 @@ def extract_components(address, max_new_tokens=200):
|
|
145 |
return process_address_with_reasoning(prompt, max_new_tokens)
|
146 |
|
147 |
# Test cases based on training script examples
|
148 |
-
print("
|
149 |
-
π MULTI-TASK ADDRESS MODEL EXAMPLES")
|
150 |
print("=" * 60)
|
151 |
-
print("π§ Testing Chain of Thought reasoning + Geographic Q&A")
|
152 |
print("π Model trained with LoRA r=64, alpha=128 for complex reasoning")
|
153 |
print("=" * 60)
|
154 |
|
@@ -160,13 +160,13 @@ test_addresses = [
|
|
160 |
"dlf cyber city gurgaon haryana"
|
161 |
]
|
162 |
|
163 |
-
print(f"
|
164 |
-
π§ TESTING ADDRESS CORRECTION WITH CHAIN OF THOUGHT:")
|
165 |
print("-" * 50)
|
166 |
|
167 |
for i, test_address in enumerate(test_addresses, 1):
|
168 |
-
print(f"
|
169 |
-
π Test {i}: {test_address}")
|
170 |
result = fix_address_with_reasoning(test_address)
|
171 |
print(f"π€ Chain of Thought Response:")
|
172 |
print(f" {result}")
|
@@ -186,19 +186,19 @@ qa_tests = [
|
|
186 |
"What cities are in Maharashtra?"
|
187 |
]
|
188 |
|
189 |
-
print(f"
|
190 |
-
β TESTING GEOGRAPHIC Q&A:")
|
191 |
print("-" * 50)
|
192 |
|
193 |
for i, question in enumerate(qa_tests[:8], 1): # Test first 8 questions
|
194 |
-
print(f"
|
195 |
-
β Q{i}: {question}")
|
196 |
result = answer_geographic_question(question)
|
197 |
print(f"π€ Answer: {result}")
|
198 |
|
199 |
# Test component extraction
|
200 |
-
print(f"
|
201 |
-
π TESTING COMPONENT EXTRACTION:")
|
202 |
print("-" * 50)
|
203 |
|
204 |
extraction_tests = [
|
@@ -208,16 +208,16 @@ extraction_tests = [
|
|
208 |
]
|
209 |
|
210 |
for i, test_address in enumerate(extraction_tests, 1):
|
211 |
-
print(f"
|
212 |
-
π Extract {i}: {test_address}")
|
213 |
result = extract_components(test_address)
|
214 |
print(f"π€ Components: {result}")
|
215 |
|
216 |
-
print(f"
|
217 |
-
β
ALL TESTS COMPLETED!")
|
218 |
-
print(f"π§ Model demonstrates Chain of Thought reasoning")
|
219 |
-
print(f"π Geographic knowledge from NER training data")
|
220 |
-
print(f"π§ Address correction with detailed analysis")
|
221 |
```
|
222 |
|
223 |
## π§ Training Methodology
|
|
|
145 |
return process_address_with_reasoning(prompt, max_new_tokens)
|
146 |
|
147 |
# Test cases based on training script examples
|
148 |
+
print("""
|
149 |
+
π MULTI-TASK ADDRESS MODEL EXAMPLES""")
|
150 |
print("=" * 60)
|
151 |
+
print("""π§ Testing Chain of Thought reasoning + Geographic Q&A""")
|
152 |
print("π Model trained with LoRA r=64, alpha=128 for complex reasoning")
|
153 |
print("=" * 60)
|
154 |
|
|
|
160 |
"dlf cyber city gurgaon haryana"
|
161 |
]
|
162 |
|
163 |
+
print(f"""
|
164 |
+
π§ TESTING ADDRESS CORRECTION WITH CHAIN OF THOUGHT:""")
|
165 |
print("-" * 50)
|
166 |
|
167 |
for i, test_address in enumerate(test_addresses, 1):
|
168 |
+
print(f"""
|
169 |
+
π Test {i}: {test_address}""")
|
170 |
result = fix_address_with_reasoning(test_address)
|
171 |
print(f"π€ Chain of Thought Response:")
|
172 |
print(f" {result}")
|
|
|
186 |
"What cities are in Maharashtra?"
|
187 |
]
|
188 |
|
189 |
+
print(f"""
|
190 |
+
β TESTING GEOGRAPHIC Q&A:""")
|
191 |
print("-" * 50)
|
192 |
|
193 |
for i, question in enumerate(qa_tests[:8], 1): # Test first 8 questions
|
194 |
+
print(f"""
|
195 |
+
β Q{i}: {question}""")
|
196 |
result = answer_geographic_question(question)
|
197 |
print(f"π€ Answer: {result}")
|
198 |
|
199 |
# Test component extraction
|
200 |
+
print(f"""
|
201 |
+
π TESTING COMPONENT EXTRACTION:""")
|
202 |
print("-" * 50)
|
203 |
|
204 |
extraction_tests = [
|
|
|
208 |
]
|
209 |
|
210 |
for i, test_address in enumerate(extraction_tests, 1):
|
211 |
+
print(f"""
|
212 |
+
π Extract {i}: {test_address}""")
|
213 |
result = extract_components(test_address)
|
214 |
print(f"π€ Components: {result}")
|
215 |
|
216 |
+
print(f"""
|
217 |
+
β
ALL TESTS COMPLETED!""")
|
218 |
+
print(f"""π§ Model demonstrates Chain of Thought reasoning""")
|
219 |
+
print(f"""π Geographic knowledge from NER training data""")
|
220 |
+
print(f"""π§ Address correction with detailed analysis""")
|
221 |
```
|
222 |
|
223 |
## π§ Training Methodology
|