--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - domain-asr - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: Whisper results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: immunology dataset type: audiofolder config: default split: test args: 'config: en, split: test' metrics: - name: Wer type: wer value: 10.52827380952381 --- # Whisper This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the immunology dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3409 - Wer: 10.5283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0305 | 4.55 | 1000 | 0.2471 | 11.1359 | | 0.0117 | 9.09 | 2000 | 0.3168 | 10.3795 | | 0.0024 | 13.64 | 3000 | 0.3312 | 10.4291 | | 0.0006 | 18.18 | 4000 | 0.3409 | 10.5283 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.15.0 - Tokenizers 0.15.0