Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.95 +/- 1.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea207279a56c94664faa5358f4a836285992c88f5f2678647a87f97d3c8d1677
|
3 |
+
size 108011
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f88513b9790>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f88513b1de0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1677081675474184234,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACkrEPlKfnTtE3RY/CkrEPlKfnTtE3RY/CkrEPlKfnTtE3RY/CkrEPlKfnTtE3RY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiBtjvwD2rr9HKom/IBTovkyTXD9tJxk/IUREP9XSnL+R1ay9nHQBv79Q1L9HG8w/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAKSsQ+Up+dO0TdFj8FWpa7ZU1hO3FxAjsKSsQ+Up+dO0TdFj8FWpa7ZU1hO3FxAjsKSsQ+Up+dO0TdFj8FWpa7ZU1hO3FxAjsKSsQ+Up+dO0TdFj8FWpa7ZU1hO3FxAjuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.38337737 0.00481025 0.58931375]\n [0.38337737 0.00481025 0.58931375]\n [0.38337737 0.00481025 0.58931375]\n [0.38337737 0.00481025 0.58931375]]",
|
60 |
+
"desired_goal": "[[-0.88713884 -1.3668823 -1.0716027 ]\n [-0.45327854 0.8616226 0.59825784]\n [ 0.76666456 -1.2251841 -0.08439172]\n [-0.50568557 -1.6587142 1.5945824 ]]",
|
61 |
+
"observation": "[[ 0.38337737 0.00481025 0.58931375 -0.00458837 0.00343784 0.0019904 ]\n [ 0.38337737 0.00481025 0.58931375 -0.00458837 0.00343784 0.0019904 ]\n [ 0.38337737 0.00481025 0.58931375 -0.00458837 0.00343784 0.0019904 ]\n [ 0.38337737 0.00481025 0.58931375 -0.00458837 0.00343784 0.0019904 ]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA39qNvRHC1D1SFow+LjzBPXWKvTxrFx4+CRg9vVE8sD01Ee09Y/N8vTdQo70cXco8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.06926512 0.10388578 0.2736078 ]\n [ 0.09435306 0.02313731 0.15438621]\n [-0.0461655 0.08605254 0.11575548]\n [-0.06175555 -0.07974284 0.0247026 ]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8PlhhPBo+b+UhpRSlIwBbJRLMowBdJRHQKaiZBP9DQZ1fZQoaAZoCWgPQwiUvaWcL/bcv5SGlFKUaBVLMmgWR0CmoiV4Pf8/dX2UKGgGaAloD0MIWMaGbvYnAMCUhpRSlGgVSzJoFkdApqHqKLsKLXV9lChoBmgJaA9DCMDPuHAgpPa/lIaUUpRoFUsyaBZHQKahrBRhttR1fZQoaAZoCWgPQwi6g9iZQmf2v5SGlFKUaBVLMmgWR0CmpEuOCGvfdX2UKGgGaAloD0MIb2JITiYu+r+UhpRSlGgVSzJoFkdApqQNM9KVZHV9lChoBmgJaA9DCGJnCp3XOAHAlIaUUpRoFUsyaBZHQKaj0IpH7P91fZQoaAZoCWgPQwjXS1MEOH33v5SGlFKUaBVLMmgWR0Cmo5LZBcAzdX2UKGgGaAloD0MILo1feCVJ4b+UhpRSlGgVSzJoFkdApqYyVlf7anV9lChoBmgJaA9DCBoaTwRx/gPAlIaUUpRoFUsyaBZHQKal88brC3x1fZQoaAZoCWgPQwji5H6HooABwJSGlFKUaBVLMmgWR0Cmpbcer+5wdX2UKGgGaAloD0MIe0563/ja4L+UhpRSlGgVSzJoFkdApqV5RbbDdnV9lChoBmgJaA9DCHnou1tZouO/lIaUUpRoFUsyaBZHQKaoCVJL/S91fZQoaAZoCWgPQwiMuWsJ+WD9v5SGlFKUaBVLMmgWR0Cmp8reZXuFdX2UKGgGaAloD0MIn+QOm8hM4r+UhpRSlGgVSzJoFkdApqeONYKYzHV9lChoBmgJaA9DCMiXUMHhhfS/lIaUUpRoFUsyaBZHQKanUDyOJch1fZQoaAZoCWgPQwgjvajdr8Lzv5SGlFKUaBVLMmgWR0CmqVdKVY6odX2UKGgGaAloD0MIQbYsX5fh/7+UhpRSlGgVSzJoFkdApqkXzcynDXV9lChoBmgJaA9DCOaTFcPVQfy/lIaUUpRoFUsyaBZHQKao2mBvrGB1fZQoaAZoCWgPQwhp4h3gSYv/v5SGlFKUaBVLMmgWR0CmqJuBUaQ4dX2UKGgGaAloD0MI24e85epH8r+UhpRSlGgVSzJoFkdApqp4znA6+3V9lChoBmgJaA9DCHvdIjDW9/6/lIaUUpRoFUsyaBZHQKaqOWtU4rB1fZQoaAZoCWgPQwh2VDVB1H3av5SGlFKUaBVLMmgWR0Cmqfvw/gR9dX2UKGgGaAloD0MIZXJqZ5ia+7+UhpRSlGgVSzJoFkdApqm9A9mpVHV9lChoBmgJaA9DCOpdvB+3X+S/lIaUUpRoFUsyaBZHQKarkbuMMql1fZQoaAZoCWgPQwiVnuklxjLrv5SGlFKUaBVLMmgWR0Cmq1JXIU8FdX2UKGgGaAloD0MIr1sExvoG6r+UhpRSlGgVSzJoFkdApqsU+qzZ6HV9lChoBmgJaA9DCF6FlJ9U+wHAlIaUUpRoFUsyaBZHQKaq1jAi3Xt1fZQoaAZoCWgPQwhLeEKvPwnhv5SGlFKUaBVLMmgWR0CmrLP4ubqhdX2UKGgGaAloD0MIc0nVdhM88b+UhpRSlGgVSzJoFkdApqx0d3jdYXV9lChoBmgJaA9DCI+LahFRzOK/lIaUUpRoFUsyaBZHQKasNutwJgN1fZQoaAZoCWgPQwjOOXgmNMnvv5SGlFKUaBVLMmgWR0Cmq/gIQe3hdX2UKGgGaAloD0MILgQ5KGFm9r+UhpRSlGgVSzJoFkdApq3ssasIV3V9lChoBmgJaA9DCJKTiVsFcfK/lIaUUpRoFUsyaBZHQKatrTMqz7d1fZQoaAZoCWgPQwhJnBVRE73xv5SGlFKUaBVLMmgWR0CmrW/gaWHDdX2UKGgGaAloD0MIL9/6sN6o27+UhpRSlGgVSzJoFkdApq0xJVbRnnV9lChoBmgJaA9DCGMNF7mniwDAlIaUUpRoFUsyaBZHQKavByOJcgR1fZQoaAZoCWgPQwhGzVfJx27kv5SGlFKUaBVLMmgWR0CmrseU6gdwdX2UKGgGaAloD0MImE9WDFfH9L+UhpRSlGgVSzJoFkdApq6KCWeHz3V9lChoBmgJaA9DCNuJkpBI2/G/lIaUUpRoFUsyaBZHQKauSyZa3Zx1fZQoaAZoCWgPQwjq7GRwlDzyv5SGlFKUaBVLMmgWR0CmsBx4ptrLdX2UKGgGaAloD0MIoiqm0k+47r+UhpRSlGgVSzJoFkdApq/dWwNb1XV9lChoBmgJaA9DCBPWxtgJr/W/lIaUUpRoFUsyaBZHQKavoLAHmih1fZQoaAZoCWgPQwhAaahRSDL7v5SGlFKUaBVLMmgWR0Cmr2K0lZ5idX2UKGgGaAloD0MIYrzmVZ2VA8CUhpRSlGgVSzJoFkdAprEyjvd/KHV9lChoBmgJaA9DCOFDiZY8Xvq/lIaUUpRoFUsyaBZHQKaw8xgRbr11fZQoaAZoCWgPQwjc2VcepCf1v5SGlFKUaBVLMmgWR0CmsLWOhkAhdX2UKGgGaAloD0MI1q2ek9439b+UhpRSlGgVSzJoFkdAprB2p++dsnV9lChoBmgJaA9DCDxPPGcLCPm/lIaUUpRoFUsyaBZHQKayS5bQkX11fZQoaAZoCWgPQwiW7UPecvXuv5SGlFKUaBVLMmgWR0Cmsgw+EAYIdX2UKGgGaAloD0MIPwEUI0um+L+UhpRSlGgVSzJoFkdAprHOozeoDXV9lChoBmgJaA9DCIKN69/1Gei/lIaUUpRoFUsyaBZHQKaxj8DSw4d1fZQoaAZoCWgPQwjBVgkWh3Pzv5SGlFKUaBVLMmgWR0Cms13meUY9dX2UKGgGaAloD0MIqKs7Ftvk8r+UhpRSlGgVSzJoFkdAprMeSB9TgnV9lChoBmgJaA9DCJyHE5hOK/W/lIaUUpRoFUsyaBZHQKay4L7XQMR1fZQoaAZoCWgPQwhVo1cDlMbzv5SGlFKUaBVLMmgWR0CmsqHyEtdzdX2UKGgGaAloD0MI9+gN95Fb2b+UhpRSlGgVSzJoFkdAprR37aZhKHV9lChoBmgJaA9DCAdcV8wIb/G/lIaUUpRoFUsyaBZHQKa0OGWUr091fZQoaAZoCWgPQwg4vCAiNe3ov5SGlFKUaBVLMmgWR0Cms/r4WUKRdX2UKGgGaAloD0MIL6NYbmn18L+UhpRSlGgVSzJoFkdAprO8B4lhPXV9lChoBmgJaA9DCHFYGvhRDe2/lIaUUpRoFUsyaBZHQKa1o+Ofdyl1fZQoaAZoCWgPQwhfXRWoxSDzv5SGlFKUaBVLMmgWR0CmtWRjJ+2FdX2UKGgGaAloD0MIeHx716Cv9b+UhpRSlGgVSzJoFkdAprUm5DqnnHV9lChoBmgJaA9DCOeKUkKw6ve/lIaUUpRoFUsyaBZHQKa06F+NLlF1fZQoaAZoCWgPQwhMpZ9wduvwv5SGlFKUaBVLMmgWR0Cmtt2912aEdX2UKGgGaAloD0MIhSSzeocb+7+UhpRSlGgVSzJoFkdApraePkq+anV9lChoBmgJaA9DCKq2m+Cbpum/lIaUUpRoFUsyaBZHQKa2YW5Yoy91fZQoaAZoCWgPQwgxt3u5Tw78v5SGlFKUaBVLMmgWR0CmtiKP4mCzdX2UKGgGaAloD0MIAYqRJXOsBMCUhpRSlGgVSzJoFkdAprf3VEuxr3V9lChoBmgJaA9DCAfSxaaVQu+/lIaUUpRoFUsyaBZHQKa3t9oexOd1fZQoaAZoCWgPQwhBRGraxTTxv5SGlFKUaBVLMmgWR0Cmt3pPykKvdX2UKGgGaAloD0MIaTUk7rFUBsCUhpRSlGgVSzJoFkdAprc7n5i3HHV9lChoBmgJaA9DCFYRbjKqTPK/lIaUUpRoFUsyaBZHQKa5EMglnh91fZQoaAZoCWgPQwg/VYUGYnkHwJSGlFKUaBVLMmgWR0CmuNFYlpoLdX2UKGgGaAloD0MINNWT+Ucf/r+UhpRSlGgVSzJoFkdApriTurp7kXV9lChoBmgJaA9DCNR+aydKQvu/lIaUUpRoFUsyaBZHQKa4VNeMQ3B1fZQoaAZoCWgPQwgZINEEitjwv5SGlFKUaBVLMmgWR0CmuiT2vjffdX2UKGgGaAloD0MIHxDoTNq0AMCUhpRSlGgVSzJoFkdAprnlcbBGhHV9lChoBmgJaA9DCECH+fICLPS/lIaUUpRoFUsyaBZHQKa5p7EYO2B1fZQoaAZoCWgPQwicoiO5/Mfzv5SGlFKUaBVLMmgWR0CmuWjRD1GtdX2UKGgGaAloD0MIELBW7ZoQAcCUhpRSlGgVSzJoFkdAprs8zEaVEHV9lChoBmgJaA9DCEUtza0Q1vu/lIaUUpRoFUsyaBZHQKa6/V1fVqh1fZQoaAZoCWgPQwgOhc/WwYECwJSGlFKUaBVLMmgWR0CmusATAWSEdX2UKGgGaAloD0MITHDqA8l7+b+UhpRSlGgVSzJoFkdAprqBMDfWMHV9lChoBmgJaA9DCFq9w+3QUArAlIaUUpRoFUsyaBZHQKa8T+yZ8a51fZQoaAZoCWgPQwidSZuqeyT7v5SGlFKUaBVLMmgWR0CmvBCqyWzGdX2UKGgGaAloD0MIsffii/Z4+7+UhpRSlGgVSzJoFkdAprvTI3irDXV9lChoBmgJaA9DCIFDqFKzB/O/lIaUUpRoFUsyaBZHQKa7lDUmUnp1fZQoaAZoCWgPQwiE2QQYln8CwJSGlFKUaBVLMmgWR0CmvgIYm9g4dX2UKGgGaAloD0MIvF0vTRHg9L+UhpRSlGgVSzJoFkdApr3DmuDBdnV9lChoBmgJaA9DCDZ4X5ULVfe/lIaUUpRoFUsyaBZHQKa9hzBAOax1fZQoaAZoCWgPQwhO7QxTW6oCwJSGlFKUaBVLMmgWR0CmvUlo+OfedX2UKGgGaAloD0MIcjRHVn6Z/r+UhpRSlGgVSzJoFkdApr/QB/7SA3V9lChoBmgJaA9DCGAhc2VQjQLAlIaUUpRoFUsyaBZHQKa/kYw7DEZ1fZQoaAZoCWgPQwiFBfcDHhj0v5SGlFKUaBVLMmgWR0Cmv1TLwF1TdX2UKGgGaAloD0MILXk8LT/w/L+UhpRSlGgVSzJoFkdApr8WSGJvYXV9lChoBmgJaA9DCNqR6ju/qOy/lIaUUpRoFUsyaBZHQKbBplqagEl1fZQoaAZoCWgPQwirJLIPsuwEwJSGlFKUaBVLMmgWR0CmwWfbblBAdX2UKGgGaAloD0MIeZW1TfE49L+UhpRSlGgVSzJoFkdApsErLns9jnV9lChoBmgJaA9DCGe5bHTOrwLAlIaUUpRoFUsyaBZHQKbA7To+wC91ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:912bfdee44fd2acd583685ed76f9eeea920be30a14aa14d4581f8f3cdab87cd1
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8df878584ddcbf84d81fcef4af856cd0aa2a1e005201ae4b252a43144ebc8fc6
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f88513b9790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f88513b1de0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677081675474184234, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACkrEPlKfnTtE3RY/CkrEPlKfnTtE3RY/CkrEPlKfnTtE3RY/CkrEPlKfnTtE3RY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiBtjvwD2rr9HKom/IBTovkyTXD9tJxk/IUREP9XSnL+R1ay9nHQBv79Q1L9HG8w/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAKSsQ+Up+dO0TdFj8FWpa7ZU1hO3FxAjsKSsQ+Up+dO0TdFj8FWpa7ZU1hO3FxAjsKSsQ+Up+dO0TdFj8FWpa7ZU1hO3FxAjsKSsQ+Up+dO0TdFj8FWpa7ZU1hO3FxAjuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.38337737 0.00481025 0.58931375]\n [0.38337737 0.00481025 0.58931375]\n [0.38337737 0.00481025 0.58931375]\n [0.38337737 0.00481025 0.58931375]]", "desired_goal": "[[-0.88713884 -1.3668823 -1.0716027 ]\n [-0.45327854 0.8616226 0.59825784]\n [ 0.76666456 -1.2251841 -0.08439172]\n [-0.50568557 -1.6587142 1.5945824 ]]", "observation": "[[ 0.38337737 0.00481025 0.58931375 -0.00458837 0.00343784 0.0019904 ]\n [ 0.38337737 0.00481025 0.58931375 -0.00458837 0.00343784 0.0019904 ]\n [ 0.38337737 0.00481025 0.58931375 -0.00458837 0.00343784 0.0019904 ]\n [ 0.38337737 0.00481025 0.58931375 -0.00458837 0.00343784 0.0019904 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA39qNvRHC1D1SFow+LjzBPXWKvTxrFx4+CRg9vVE8sD01Ee09Y/N8vTdQo70cXco8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06926512 0.10388578 0.2736078 ]\n [ 0.09435306 0.02313731 0.15438621]\n [-0.0461655 0.08605254 0.11575548]\n [-0.06175555 -0.07974284 0.0247026 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8PlhhPBo+b+UhpRSlIwBbJRLMowBdJRHQKaiZBP9DQZ1fZQoaAZoCWgPQwiUvaWcL/bcv5SGlFKUaBVLMmgWR0CmoiV4Pf8/dX2UKGgGaAloD0MIWMaGbvYnAMCUhpRSlGgVSzJoFkdApqHqKLsKLXV9lChoBmgJaA9DCMDPuHAgpPa/lIaUUpRoFUsyaBZHQKahrBRhttR1fZQoaAZoCWgPQwi6g9iZQmf2v5SGlFKUaBVLMmgWR0CmpEuOCGvfdX2UKGgGaAloD0MIb2JITiYu+r+UhpRSlGgVSzJoFkdApqQNM9KVZHV9lChoBmgJaA9DCGJnCp3XOAHAlIaUUpRoFUsyaBZHQKaj0IpH7P91fZQoaAZoCWgPQwjXS1MEOH33v5SGlFKUaBVLMmgWR0Cmo5LZBcAzdX2UKGgGaAloD0MILo1feCVJ4b+UhpRSlGgVSzJoFkdApqYyVlf7anV9lChoBmgJaA9DCBoaTwRx/gPAlIaUUpRoFUsyaBZHQKal88brC3x1fZQoaAZoCWgPQwji5H6HooABwJSGlFKUaBVLMmgWR0Cmpbcer+5wdX2UKGgGaAloD0MIe0563/ja4L+UhpRSlGgVSzJoFkdApqV5RbbDdnV9lChoBmgJaA9DCHnou1tZouO/lIaUUpRoFUsyaBZHQKaoCVJL/S91fZQoaAZoCWgPQwiMuWsJ+WD9v5SGlFKUaBVLMmgWR0Cmp8reZXuFdX2UKGgGaAloD0MIn+QOm8hM4r+UhpRSlGgVSzJoFkdApqeONYKYzHV9lChoBmgJaA9DCMiXUMHhhfS/lIaUUpRoFUsyaBZHQKanUDyOJch1fZQoaAZoCWgPQwgjvajdr8Lzv5SGlFKUaBVLMmgWR0CmqVdKVY6odX2UKGgGaAloD0MIQbYsX5fh/7+UhpRSlGgVSzJoFkdApqkXzcynDXV9lChoBmgJaA9DCOaTFcPVQfy/lIaUUpRoFUsyaBZHQKao2mBvrGB1fZQoaAZoCWgPQwhp4h3gSYv/v5SGlFKUaBVLMmgWR0CmqJuBUaQ4dX2UKGgGaAloD0MI24e85epH8r+UhpRSlGgVSzJoFkdApqp4znA6+3V9lChoBmgJaA9DCHvdIjDW9/6/lIaUUpRoFUsyaBZHQKaqOWtU4rB1fZQoaAZoCWgPQwh2VDVB1H3av5SGlFKUaBVLMmgWR0Cmqfvw/gR9dX2UKGgGaAloD0MIZXJqZ5ia+7+UhpRSlGgVSzJoFkdApqm9A9mpVHV9lChoBmgJaA9DCOpdvB+3X+S/lIaUUpRoFUsyaBZHQKarkbuMMql1fZQoaAZoCWgPQwiVnuklxjLrv5SGlFKUaBVLMmgWR0Cmq1JXIU8FdX2UKGgGaAloD0MIr1sExvoG6r+UhpRSlGgVSzJoFkdApqsU+qzZ6HV9lChoBmgJaA9DCF6FlJ9U+wHAlIaUUpRoFUsyaBZHQKaq1jAi3Xt1fZQoaAZoCWgPQwhLeEKvPwnhv5SGlFKUaBVLMmgWR0CmrLP4ubqhdX2UKGgGaAloD0MIc0nVdhM88b+UhpRSlGgVSzJoFkdApqx0d3jdYXV9lChoBmgJaA9DCI+LahFRzOK/lIaUUpRoFUsyaBZHQKasNutwJgN1fZQoaAZoCWgPQwjOOXgmNMnvv5SGlFKUaBVLMmgWR0Cmq/gIQe3hdX2UKGgGaAloD0MILgQ5KGFm9r+UhpRSlGgVSzJoFkdApq3ssasIV3V9lChoBmgJaA9DCJKTiVsFcfK/lIaUUpRoFUsyaBZHQKatrTMqz7d1fZQoaAZoCWgPQwhJnBVRE73xv5SGlFKUaBVLMmgWR0CmrW/gaWHDdX2UKGgGaAloD0MIL9/6sN6o27+UhpRSlGgVSzJoFkdApq0xJVbRnnV9lChoBmgJaA9DCGMNF7mniwDAlIaUUpRoFUsyaBZHQKavByOJcgR1fZQoaAZoCWgPQwhGzVfJx27kv5SGlFKUaBVLMmgWR0CmrseU6gdwdX2UKGgGaAloD0MImE9WDFfH9L+UhpRSlGgVSzJoFkdApq6KCWeHz3V9lChoBmgJaA9DCNuJkpBI2/G/lIaUUpRoFUsyaBZHQKauSyZa3Zx1fZQoaAZoCWgPQwjq7GRwlDzyv5SGlFKUaBVLMmgWR0CmsBx4ptrLdX2UKGgGaAloD0MIoiqm0k+47r+UhpRSlGgVSzJoFkdApq/dWwNb1XV9lChoBmgJaA9DCBPWxtgJr/W/lIaUUpRoFUsyaBZHQKavoLAHmih1fZQoaAZoCWgPQwhAaahRSDL7v5SGlFKUaBVLMmgWR0Cmr2K0lZ5idX2UKGgGaAloD0MIYrzmVZ2VA8CUhpRSlGgVSzJoFkdAprEyjvd/KHV9lChoBmgJaA9DCOFDiZY8Xvq/lIaUUpRoFUsyaBZHQKaw8xgRbr11fZQoaAZoCWgPQwjc2VcepCf1v5SGlFKUaBVLMmgWR0CmsLWOhkAhdX2UKGgGaAloD0MI1q2ek9439b+UhpRSlGgVSzJoFkdAprB2p++dsnV9lChoBmgJaA9DCDxPPGcLCPm/lIaUUpRoFUsyaBZHQKayS5bQkX11fZQoaAZoCWgPQwiW7UPecvXuv5SGlFKUaBVLMmgWR0Cmsgw+EAYIdX2UKGgGaAloD0MIPwEUI0um+L+UhpRSlGgVSzJoFkdAprHOozeoDXV9lChoBmgJaA9DCIKN69/1Gei/lIaUUpRoFUsyaBZHQKaxj8DSw4d1fZQoaAZoCWgPQwjBVgkWh3Pzv5SGlFKUaBVLMmgWR0Cms13meUY9dX2UKGgGaAloD0MIqKs7Ftvk8r+UhpRSlGgVSzJoFkdAprMeSB9TgnV9lChoBmgJaA9DCJyHE5hOK/W/lIaUUpRoFUsyaBZHQKay4L7XQMR1fZQoaAZoCWgPQwhVo1cDlMbzv5SGlFKUaBVLMmgWR0CmsqHyEtdzdX2UKGgGaAloD0MI9+gN95Fb2b+UhpRSlGgVSzJoFkdAprR37aZhKHV9lChoBmgJaA9DCAdcV8wIb/G/lIaUUpRoFUsyaBZHQKa0OGWUr091fZQoaAZoCWgPQwg4vCAiNe3ov5SGlFKUaBVLMmgWR0Cms/r4WUKRdX2UKGgGaAloD0MIL6NYbmn18L+UhpRSlGgVSzJoFkdAprO8B4lhPXV9lChoBmgJaA9DCHFYGvhRDe2/lIaUUpRoFUsyaBZHQKa1o+Ofdyl1fZQoaAZoCWgPQwhfXRWoxSDzv5SGlFKUaBVLMmgWR0CmtWRjJ+2FdX2UKGgGaAloD0MIeHx716Cv9b+UhpRSlGgVSzJoFkdAprUm5DqnnHV9lChoBmgJaA9DCOeKUkKw6ve/lIaUUpRoFUsyaBZHQKa06F+NLlF1fZQoaAZoCWgPQwhMpZ9wduvwv5SGlFKUaBVLMmgWR0Cmtt2912aEdX2UKGgGaAloD0MIhSSzeocb+7+UhpRSlGgVSzJoFkdApraePkq+anV9lChoBmgJaA9DCKq2m+Cbpum/lIaUUpRoFUsyaBZHQKa2YW5Yoy91fZQoaAZoCWgPQwgxt3u5Tw78v5SGlFKUaBVLMmgWR0CmtiKP4mCzdX2UKGgGaAloD0MIAYqRJXOsBMCUhpRSlGgVSzJoFkdAprf3VEuxr3V9lChoBmgJaA9DCAfSxaaVQu+/lIaUUpRoFUsyaBZHQKa3t9oexOd1fZQoaAZoCWgPQwhBRGraxTTxv5SGlFKUaBVLMmgWR0Cmt3pPykKvdX2UKGgGaAloD0MIaTUk7rFUBsCUhpRSlGgVSzJoFkdAprc7n5i3HHV9lChoBmgJaA9DCFYRbjKqTPK/lIaUUpRoFUsyaBZHQKa5EMglnh91fZQoaAZoCWgPQwg/VYUGYnkHwJSGlFKUaBVLMmgWR0CmuNFYlpoLdX2UKGgGaAloD0MINNWT+Ucf/r+UhpRSlGgVSzJoFkdApriTurp7kXV9lChoBmgJaA9DCNR+aydKQvu/lIaUUpRoFUsyaBZHQKa4VNeMQ3B1fZQoaAZoCWgPQwgZINEEitjwv5SGlFKUaBVLMmgWR0CmuiT2vjffdX2UKGgGaAloD0MIHxDoTNq0AMCUhpRSlGgVSzJoFkdAprnlcbBGhHV9lChoBmgJaA9DCECH+fICLPS/lIaUUpRoFUsyaBZHQKa5p7EYO2B1fZQoaAZoCWgPQwicoiO5/Mfzv5SGlFKUaBVLMmgWR0CmuWjRD1GtdX2UKGgGaAloD0MIELBW7ZoQAcCUhpRSlGgVSzJoFkdAprs8zEaVEHV9lChoBmgJaA9DCEUtza0Q1vu/lIaUUpRoFUsyaBZHQKa6/V1fVqh1fZQoaAZoCWgPQwgOhc/WwYECwJSGlFKUaBVLMmgWR0CmusATAWSEdX2UKGgGaAloD0MITHDqA8l7+b+UhpRSlGgVSzJoFkdAprqBMDfWMHV9lChoBmgJaA9DCFq9w+3QUArAlIaUUpRoFUsyaBZHQKa8T+yZ8a51fZQoaAZoCWgPQwidSZuqeyT7v5SGlFKUaBVLMmgWR0CmvBCqyWzGdX2UKGgGaAloD0MIsffii/Z4+7+UhpRSlGgVSzJoFkdAprvTI3irDXV9lChoBmgJaA9DCIFDqFKzB/O/lIaUUpRoFUsyaBZHQKa7lDUmUnp1fZQoaAZoCWgPQwiE2QQYln8CwJSGlFKUaBVLMmgWR0CmvgIYm9g4dX2UKGgGaAloD0MIvF0vTRHg9L+UhpRSlGgVSzJoFkdApr3DmuDBdnV9lChoBmgJaA9DCDZ4X5ULVfe/lIaUUpRoFUsyaBZHQKa9hzBAOax1fZQoaAZoCWgPQwhO7QxTW6oCwJSGlFKUaBVLMmgWR0CmvUlo+OfedX2UKGgGaAloD0MIcjRHVn6Z/r+UhpRSlGgVSzJoFkdApr/QB/7SA3V9lChoBmgJaA9DCGAhc2VQjQLAlIaUUpRoFUsyaBZHQKa/kYw7DEZ1fZQoaAZoCWgPQwiFBfcDHhj0v5SGlFKUaBVLMmgWR0Cmv1TLwF1TdX2UKGgGaAloD0MILXk8LT/w/L+UhpRSlGgVSzJoFkdApr8WSGJvYXV9lChoBmgJaA9DCNqR6ju/qOy/lIaUUpRoFUsyaBZHQKbBplqagEl1fZQoaAZoCWgPQwirJLIPsuwEwJSGlFKUaBVLMmgWR0CmwWfbblBAdX2UKGgGaAloD0MIeZW1TfE49L+UhpRSlGgVSzJoFkdApsErLns9jnV9lChoBmgJaA9DCGe5bHTOrwLAlIaUUpRoFUsyaBZHQKbA7To+wC91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (421 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.9515819723019376, "std_reward": 1.1126431793010547, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-22T16:49:52.581712"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:629a7d5f9b80c2165418c8adcaa11650aaa49b032e79ba124f52c8263f1cffe2
|
3 |
+
size 3056
|