--- license: mit base_model: - sentence-transformers/paraphrase-multilingual-mpnet-base-v2 --- # protestforms_mpnet-base-v2 This is a fine-tuned [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It was trained on a manually annotated dataset of German newspaper articles containing information on protest forms. ## Usage (Sentence-Transformers) ```python from sentence_transformers import SentenceTransformer sentences = ["At 8pm protesters gathered on the main square and shouted 'end fossil fuels'", "The German government demonstrated composure in its reaction to social media posts"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) # Sentences we want sentence embeddings for sentences = ["At 8pm protesters gathered on the main square and shouted 'end fossil fuels'", "The German government demonstrated composure in its reaction to social media posts"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('shaunss/protestforms_mpnet-base-v2') model = AutoModel.from_pretrained('shaunss/protestforms_mpnet-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') ``` ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 681 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.BatchSemiHardTripletLoss.BatchSemiHardTripletLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 2177.5, "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2177.5, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors