shaunss commited on
Commit
8ce16eb
·
verified ·
1 Parent(s): 5df4cef

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -55
README.md CHANGED
@@ -1,83 +1,39 @@
1
  ---
2
- pipeline_tag: sentence-similarity
3
- tags:
4
- - sentence-transformers
5
- - feature-extraction
6
- - sentence-similarity
7
- - transformers
8
-
9
  ---
10
 
11
- # {MODEL_NAME}
12
 
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
- <!--- Describe your model here -->
16
 
17
  ## Usage (Sentence-Transformers)
18
 
19
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
-
21
- ```
22
- pip install -U sentence-transformers
23
- ```
24
-
25
- Then you can use the model like this:
26
 
27
  ```python
28
  from sentence_transformers import SentenceTransformer
29
- sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
  model = SentenceTransformer('{MODEL_NAME}')
32
  embeddings = model.encode(sentences)
33
- print(embeddings)
34
- ```
35
-
36
-
37
-
38
- ## Usage (HuggingFace Transformers)
39
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
40
-
41
- ```python
42
- from transformers import AutoTokenizer, AutoModel
43
- import torch
44
-
45
-
46
- #Mean Pooling - Take attention mask into account for correct averaging
47
- def mean_pooling(model_output, attention_mask):
48
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
49
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
50
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
51
 
52
 
53
  # Sentences we want sentence embeddings for
54
- sentences = ['This is an example sentence', 'Each sentence is converted']
55
 
56
  # Load model from HuggingFace Hub
57
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
- model = AutoModel.from_pretrained('{MODEL_NAME}')
59
 
60
  # Tokenize sentences
61
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
62
 
63
- # Compute token embeddings
64
- with torch.no_grad():
65
- model_output = model(**encoded_input)
66
-
67
- # Perform pooling. In this case, mean pooling.
68
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
69
-
70
- print("Sentence embeddings:")
71
- print(sentence_embeddings)
72
- ```
73
-
74
-
75
-
76
- ## Evaluation Results
77
-
78
  <!--- Describe how your model was evaluated -->
79
 
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
 
82
 
83
  ## Training
 
1
  ---
2
+ license: mit
3
+ base_model:
4
+ - sentence-transformers/paraphrase-multilingual-mpnet-base-v2
 
 
 
 
5
  ---
6
 
7
+ # protestforms_mpnet-base-v2
8
 
9
+ This is a fine-tuned [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
10
 
11
+ It was trained on a manually annotated dataset of German newspaper articles containing information on protest forms.
12
 
13
  ## Usage (Sentence-Transformers)
14
 
 
 
 
 
 
 
 
15
 
16
  ```python
17
  from sentence_transformers import SentenceTransformer
18
+ sentences = ["At 8pm protesters gathered on the main square and shouted 'end fossil fuels'", "The German government demonstrated composure in its reaction to social media posts"]
19
 
20
  model = SentenceTransformer('{MODEL_NAME}')
21
  embeddings = model.encode(sentences)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
 
24
  # Sentences we want sentence embeddings for
25
+ sentences = ["At 8pm protesters gathered on the main square and shouted 'end fossil fuels'", "The German government demonstrated composure in its reaction to social media posts"]
26
 
27
  # Load model from HuggingFace Hub
28
+ tokenizer = AutoTokenizer.from_pretrained('shaunss/protestforms_mpnet-base-v2')
29
+ model = AutoModel.from_pretrained('shaunss/protestforms_mpnet-base-v2')
30
 
31
  # Tokenize sentences
32
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  <!--- Describe how your model was evaluated -->
35
 
36
+ <!--- t.b.d. -->
37
 
38
 
39
  ## Training