DQN playing CartPole-v1 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
2a8bf2e
| from typing import Dict, Optional, Tuple, Type | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from numpy.typing import NDArray | |
| from torch.distributions import Distribution, constraints | |
| from rl_algo_impls.shared.actor.actor import Actor, PiForward, pi_forward | |
| from rl_algo_impls.shared.actor.categorical import MaskedCategorical | |
| from rl_algo_impls.shared.encoder import EncoderOutDim | |
| from rl_algo_impls.shared.module.utils import mlp | |
| class MultiCategorical(Distribution): | |
| def __init__( | |
| self, | |
| nvec: NDArray[np.int64], | |
| probs=None, | |
| logits=None, | |
| validate_args=None, | |
| masks: Optional[torch.Tensor] = None, | |
| ): | |
| # Either probs or logits should be set | |
| assert (probs is None) != (logits is None) | |
| masks_split = ( | |
| torch.split(masks, nvec.tolist(), dim=1) | |
| if masks is not None | |
| else [None] * len(nvec) | |
| ) | |
| if probs: | |
| self.dists = [ | |
| MaskedCategorical(probs=p, validate_args=validate_args, mask=m) | |
| for p, m in zip(torch.split(probs, nvec.tolist(), dim=1), masks_split) | |
| ] | |
| param = probs | |
| else: | |
| assert logits is not None | |
| self.dists = [ | |
| MaskedCategorical(logits=lg, validate_args=validate_args, mask=m) | |
| for lg, m in zip(torch.split(logits, nvec.tolist(), dim=1), masks_split) | |
| ] | |
| param = logits | |
| batch_shape = param.size()[:-1] if param.ndimension() > 1 else torch.Size() | |
| super().__init__(batch_shape=batch_shape, validate_args=validate_args) | |
| def log_prob(self, action: torch.Tensor) -> torch.Tensor: | |
| prob_stack = torch.stack( | |
| [c.log_prob(a) for a, c in zip(action.T, self.dists)], dim=-1 | |
| ) | |
| return prob_stack.sum(dim=-1) | |
| def entropy(self) -> torch.Tensor: | |
| return torch.stack([c.entropy() for c in self.dists], dim=-1).sum(dim=-1) | |
| def sample(self, sample_shape: torch.Size = torch.Size()) -> torch.Tensor: | |
| return torch.stack([c.sample(sample_shape) for c in self.dists], dim=-1) | |
| def mode(self) -> torch.Tensor: | |
| return torch.stack([c.mode for c in self.dists], dim=-1) | |
| def arg_constraints(self) -> Dict[str, constraints.Constraint]: | |
| # Constraints handled by child distributions in dist | |
| return {} | |
| class MultiDiscreteActorHead(Actor): | |
| def __init__( | |
| self, | |
| nvec: NDArray[np.int64], | |
| in_dim: EncoderOutDim, | |
| hidden_sizes: Tuple[int, ...] = (32,), | |
| activation: Type[nn.Module] = nn.ReLU, | |
| init_layers_orthogonal: bool = True, | |
| ) -> None: | |
| super().__init__() | |
| self.nvec = nvec | |
| assert isinstance(in_dim, int) | |
| layer_sizes = (in_dim,) + hidden_sizes + (nvec.sum(),) | |
| self._fc = mlp( | |
| layer_sizes, | |
| activation, | |
| init_layers_orthogonal=init_layers_orthogonal, | |
| final_layer_gain=0.01, | |
| ) | |
| def forward( | |
| self, | |
| obs: torch.Tensor, | |
| actions: Optional[torch.Tensor] = None, | |
| action_masks: Optional[torch.Tensor] = None, | |
| ) -> PiForward: | |
| logits = self._fc(obs) | |
| pi = MultiCategorical(self.nvec, logits=logits, masks=action_masks) | |
| return pi_forward(pi, actions) | |
| def action_shape(self) -> Tuple[int, ...]: | |
| return (len(self.nvec),) | |