--- library_name: transformers language: - ug license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - THUGY20 metrics: - wer model-index: - name: Whisper Small Fine-tuned with THUYG20 Uyghur Dataset results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: 'THUGY20: A free Uyghur speech database' type: THUGY20 metrics: - name: Wer type: wer value: 22.847080209043398 --- # Whisper Small Fine-tuned with THUYG20 Uyghur Dataset This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the THUGY20: A free Uyghur speech database dataset. It achieves the following results on the evaluation set: - Loss: 0.3708 - Wer Ortho: 22.9277 - Wer: 22.8471 - Cer: 5.8681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 200 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | Wer Ortho | |:-------------:|:------:|:----:|:------:|:---------------:|:-------:|:---------:| | 0.5311 | 0.8403 | 200 | 9.8849 | 0.5551 | 40.8203 | 40.8026 | | 0.2102 | 1.6807 | 400 | 7.9473 | 0.4169 | 31.2599 | 31.2051 | | 0.0712 | 2.5210 | 600 | 7.7075 | 0.3970 | 28.7094 | 28.7809 | | 0.0227 | 3.3613 | 800 | 7.1401 | 0.3966 | 26.4656 | 26.4852 | | 0.0109 | 4.2017 | 1000 | 6.7159 | 0.3661 | 24.5683 | 24.6218 | | 0.0067 | 5.0420 | 1200 | 6.1440 | 0.3753 | 23.9434 | 24.0318 | | 0.003 | 5.8824 | 1400 | 5.9610 | 0.3694 | 23.1822 | 23.2315 | | 0.002 | 6.7227 | 1600 | 5.8850 | 0.3728 | 22.8925 | 22.9686 | | 0.0017 | 7.5630 | 1800 | 5.8695 | 0.3708 | 22.8584 | 22.9394 | | 0.0018 | 8.4034 | 2000 | 5.8681 | 0.3710 | 22.8471 | 22.9277 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0