sergioalves commited on
Commit
67a3196
·
verified ·
1 Parent(s): aaebacc

End of training

Browse files
Files changed (2) hide show
  1. README.md +160 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: gpl
4
+ base_model: NousResearch/GPT4-x-Vicuna-13b-fp16
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 581a7fb3-fe0a-4d37-bb69-7cd1330f5f4f
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: NousResearch/GPT4-x-Vicuna-13b-fp16
23
+ bf16: auto
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - 5a3ca1d7d045d6c1_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/5a3ca1d7d045d6c1_train_data.json
32
+ type:
33
+ field_instruction: prompt
34
+ field_output: response
35
+ format: '{instruction}'
36
+ no_input_format: '{instruction}'
37
+ system_format: '{system}'
38
+ system_prompt: ''
39
+ debug: null
40
+ deepspeed: null
41
+ device: cuda
42
+ early_stopping_patience: 1
43
+ eval_max_new_tokens: 128
44
+ eval_steps: 5
45
+ eval_table_size: null
46
+ evals_per_epoch: null
47
+ flash_attention: false
48
+ fp16: null
49
+ gradient_accumulation_steps: 4
50
+ gradient_checkpointing: true
51
+ group_by_length: true
52
+ hub_model_id: sergioalves/581a7fb3-fe0a-4d37-bb69-7cd1330f5f4f
53
+ hub_repo: null
54
+ hub_strategy: checkpoint
55
+ hub_token: null
56
+ learning_rate: 0.0002
57
+ load_in_4bit: false
58
+ load_in_8bit: false
59
+ local_rank: null
60
+ logging_steps: 3
61
+ lora_alpha: 32
62
+ lora_dropout: 0.05
63
+ lora_fan_in_fan_out: null
64
+ lora_model_dir: null
65
+ lora_r: 16
66
+ lora_target_linear: true
67
+ lr_scheduler: cosine
68
+ max_memory:
69
+ 0: 79GiB
70
+ max_steps: 30
71
+ micro_batch_size: 4
72
+ mlflow_experiment_name: /tmp/5a3ca1d7d045d6c1_train_data.json
73
+ model_type: AutoModelForCausalLM
74
+ num_epochs: 1
75
+ optim_args:
76
+ adam_beta1: 0.9
77
+ adam_beta2: 0.95
78
+ adam_epsilon: 1e-5
79
+ optimizer: adamw_torch
80
+ output_dir: miner_id_24
81
+ pad_to_sequence_len: true
82
+ resume_from_checkpoint: null
83
+ s2_attention: null
84
+ sample_packing: false
85
+ save_steps: 10
86
+ sequence_len: 1024
87
+ strict: false
88
+ tf32: false
89
+ tokenizer_type: AutoTokenizer
90
+ train_on_inputs: true
91
+ trust_remote_code: true
92
+ val_set_size: 0.05
93
+ wandb_entity: null
94
+ wandb_mode: online
95
+ wandb_name: 1cc9ecdf-65e0-4d69-8173-c2a1676528b7
96
+ wandb_project: Gradients-On-Demand
97
+ wandb_run: your_name
98
+ wandb_runid: 1cc9ecdf-65e0-4d69-8173-c2a1676528b7
99
+ warmup_steps: 5
100
+ weight_decay: 0.001
101
+ xformers_attention: true
102
+
103
+ ```
104
+
105
+ </details><br>
106
+
107
+ # 581a7fb3-fe0a-4d37-bb69-7cd1330f5f4f
108
+
109
+ This model is a fine-tuned version of [NousResearch/GPT4-x-Vicuna-13b-fp16](https://huggingface.co/NousResearch/GPT4-x-Vicuna-13b-fp16) on the None dataset.
110
+ It achieves the following results on the evaluation set:
111
+ - Loss: 1.6378
112
+
113
+ ## Model description
114
+
115
+ More information needed
116
+
117
+ ## Intended uses & limitations
118
+
119
+ More information needed
120
+
121
+ ## Training and evaluation data
122
+
123
+ More information needed
124
+
125
+ ## Training procedure
126
+
127
+ ### Training hyperparameters
128
+
129
+ The following hyperparameters were used during training:
130
+ - learning_rate: 0.0002
131
+ - train_batch_size: 4
132
+ - eval_batch_size: 4
133
+ - seed: 42
134
+ - gradient_accumulation_steps: 4
135
+ - total_train_batch_size: 16
136
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
137
+ - lr_scheduler_type: cosine
138
+ - lr_scheduler_warmup_steps: 5
139
+ - training_steps: 30
140
+
141
+ ### Training results
142
+
143
+ | Training Loss | Epoch | Step | Validation Loss |
144
+ |:-------------:|:------:|:----:|:---------------:|
145
+ | No log | 0.0003 | 1 | 2.0743 |
146
+ | 1.7137 | 0.0014 | 5 | 1.9904 |
147
+ | 1.4401 | 0.0027 | 10 | 1.7438 |
148
+ | 1.454 | 0.0041 | 15 | 1.6817 |
149
+ | 1.349 | 0.0055 | 20 | 1.6531 |
150
+ | 1.413 | 0.0069 | 25 | 1.6406 |
151
+ | 1.6077 | 0.0082 | 30 | 1.6378 |
152
+
153
+
154
+ ### Framework versions
155
+
156
+ - PEFT 0.13.2
157
+ - Transformers 4.46.0
158
+ - Pytorch 2.5.0+cu124
159
+ - Datasets 3.0.1
160
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c2bc19121a81811fd74fb35a8f453002d401e8b52a031d1e751e7f3ea4eb497
3
+ size 250550026