seregadgl commited on
Commit
d74bad7
·
verified ·
1 Parent(s): 9a35a8c

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,528 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: jinaai/jina-embeddings-v3
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - pearson_cosine
6
+ - spearman_cosine
7
+ pipeline_tag: sentence-similarity
8
+ tags:
9
+ - sentence-transformers
10
+ - sentence-similarity
11
+ - feature-extraction
12
+ - generated_from_trainer
13
+ - dataset_size:63802
14
+ - loss:CoSENTLoss
15
+ widget:
16
+ - source_sentence: машинка детская самоходная бибикар желтый
17
+ sentences:
18
+ - 'машинка детская красная бибикар '
19
+ - моторное масло alpine dx1 5w 30 5л 0101662
20
+ - 'спинбайк schwinn ic7 '
21
+ - source_sentence: 'велосипед stels saber 20 фиолетовый '
22
+ sentences:
23
+ - 'детские спортивные комплексы '
24
+ - 'велосипед bmx stels saber 20 v010 2020 '
25
+ - 50218 кабель ugreen hd132 hdmi zinc alloy optical fiber cable черный 40m
26
+ - source_sentence: гидравличесские прессы
27
+ sentences:
28
+ - пресс гидравлический ручной механизмом
29
+ - ракетка для настольного тенниса fora 7
30
+ - 'объектив panasonic 20mm f1 7 asph ii h h020ae k '
31
+ - source_sentence: 'бокс пластиковый монтажной платой щмп п 300х200х130 мм ip65 proxima
32
+ ящики щитки шкафы '
33
+ sentences:
34
+ - батарейный отсек для 4xаа открытый проволочные выводы разъем dcx2 1 battery holder
35
+ 4xaa 6v dc
36
+ - 'bugera bc15 '
37
+ - 'бокс пластиковый монтажной платой щмп п 500х350х190 мм ip65 proxima ящики щитки
38
+ шкафы '
39
+ - source_sentence: 'honor watch gs pro black '
40
+ sentences:
41
+ - 'honor watch gs pro white '
42
+ - трансформер pituso carlo hb gy 06 lemon
43
+ - 'электровелосипед колхозник volten greenline 500w '
44
+ model-index:
45
+ - name: SentenceTransformer based on jinaai/jina-embeddings-v3
46
+ results:
47
+ - task:
48
+ type: semantic-similarity
49
+ name: Semantic Similarity
50
+ dataset:
51
+ name: example dev
52
+ type: example-dev
53
+ metrics:
54
+ - type: pearson_cosine
55
+ value: 0.47736782328677585
56
+ name: Pearson Cosine
57
+ - type: spearman_cosine
58
+ value: 0.49693031448879005
59
+ name: Spearman Cosine
60
+ ---
61
+
62
+ # SentenceTransformer based on jinaai/jina-embeddings-v3
63
+
64
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
65
+
66
+ ## Model Details
67
+
68
+ ### Model Description
69
+ - **Model Type:** Sentence Transformer
70
+ - **Base model:** [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) <!-- at revision 30996fea06f69ecd8382ee4f11e29acaf6b5405e -->
71
+ - **Maximum Sequence Length:** 8194 tokens
72
+ - **Output Dimensionality:** 1024 dimensions
73
+ - **Similarity Function:** Cosine Similarity
74
+ <!-- - **Training Dataset:** Unknown -->
75
+ <!-- - **Language:** Unknown -->
76
+ <!-- - **License:** Unknown -->
77
+
78
+ ### Model Sources
79
+
80
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
81
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
82
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
83
+
84
+ ### Full Model Architecture
85
+
86
+ ```
87
+ SentenceTransformer(
88
+ (transformer): Transformer(
89
+ (auto_model): XLMRobertaLoRA(
90
+ (roberta): XLMRobertaModel(
91
+ (embeddings): XLMRobertaEmbeddings(
92
+ (word_embeddings): ParametrizedEmbedding(
93
+ 250002, 1024, padding_idx=1
94
+ (parametrizations): ModuleDict(
95
+ (weight): ParametrizationList(
96
+ (0): LoRAParametrization()
97
+ )
98
+ )
99
+ )
100
+ (token_type_embeddings): ParametrizedEmbedding(
101
+ 1, 1024
102
+ (parametrizations): ModuleDict(
103
+ (weight): ParametrizationList(
104
+ (0): LoRAParametrization()
105
+ )
106
+ )
107
+ )
108
+ )
109
+ (emb_drop): Dropout(p=0.1, inplace=False)
110
+ (emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
111
+ (encoder): XLMRobertaEncoder(
112
+ (layers): ModuleList(
113
+ (0-23): 24 x Block(
114
+ (mixer): MHA(
115
+ (rotary_emb): RotaryEmbedding()
116
+ (Wqkv): ParametrizedLinearResidual(
117
+ in_features=1024, out_features=3072, bias=True
118
+ (parametrizations): ModuleDict(
119
+ (weight): ParametrizationList(
120
+ (0): LoRAParametrization()
121
+ )
122
+ )
123
+ )
124
+ (inner_attn): SelfAttention(
125
+ (drop): Dropout(p=0.1, inplace=False)
126
+ )
127
+ (inner_cross_attn): CrossAttention(
128
+ (drop): Dropout(p=0.1, inplace=False)
129
+ )
130
+ (out_proj): ParametrizedLinear(
131
+ in_features=1024, out_features=1024, bias=True
132
+ (parametrizations): ModuleDict(
133
+ (weight): ParametrizationList(
134
+ (0): LoRAParametrization()
135
+ )
136
+ )
137
+ )
138
+ )
139
+ (dropout1): Dropout(p=0.1, inplace=False)
140
+ (drop_path1): StochasticDepth(p=0.0, mode=row)
141
+ (norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
142
+ (mlp): Mlp(
143
+ (fc1): ParametrizedLinear(
144
+ in_features=1024, out_features=4096, bias=True
145
+ (parametrizations): ModuleDict(
146
+ (weight): ParametrizationList(
147
+ (0): LoRAParametrization()
148
+ )
149
+ )
150
+ )
151
+ (fc2): ParametrizedLinear(
152
+ in_features=4096, out_features=1024, bias=True
153
+ (parametrizations): ModuleDict(
154
+ (weight): ParametrizationList(
155
+ (0): LoRAParametrization()
156
+ )
157
+ )
158
+ )
159
+ )
160
+ (dropout2): Dropout(p=0.1, inplace=False)
161
+ (drop_path2): StochasticDepth(p=0.0, mode=row)
162
+ (norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
163
+ )
164
+ )
165
+ )
166
+ (pooler): XLMRobertaPooler(
167
+ (dense): ParametrizedLinear(
168
+ in_features=1024, out_features=1024, bias=True
169
+ (parametrizations): ModuleDict(
170
+ (weight): ParametrizationList(
171
+ (0): LoRAParametrization()
172
+ )
173
+ )
174
+ )
175
+ (activation): Tanh()
176
+ )
177
+ )
178
+ )
179
+ )
180
+ (pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
181
+ (normalizer): Normalize()
182
+ )
183
+ ```
184
+
185
+ ## Usage
186
+
187
+ ### Direct Usage (Sentence Transformers)
188
+
189
+ First install the Sentence Transformers library:
190
+
191
+ ```bash
192
+ pip install -U sentence-transformers
193
+ ```
194
+
195
+ Then you can load this model and run inference.
196
+ ```python
197
+ from sentence_transformers import SentenceTransformer
198
+
199
+ # Download from the 🤗 Hub
200
+ model = SentenceTransformer("seregadgl/t2")
201
+ # Run inference
202
+ sentences = [
203
+ 'honor watch gs pro black ',
204
+ 'honor watch gs pro white ',
205
+ 'трансформер pituso carlo hb gy 06 lemon',
206
+ ]
207
+ embeddings = model.encode(sentences)
208
+ print(embeddings.shape)
209
+ # [3, 1024]
210
+
211
+ # Get the similarity scores for the embeddings
212
+ similarities = model.similarity(embeddings, embeddings)
213
+ print(similarities.shape)
214
+ # [3, 3]
215
+ ```
216
+
217
+ <!--
218
+ ### Direct Usage (Transformers)
219
+
220
+ <details><summary>Click to see the direct usage in Transformers</summary>
221
+
222
+ </details>
223
+ -->
224
+
225
+ <!--
226
+ ### Downstream Usage (Sentence Transformers)
227
+
228
+ You can finetune this model on your own dataset.
229
+
230
+ <details><summary>Click to expand</summary>
231
+
232
+ </details>
233
+ -->
234
+
235
+ <!--
236
+ ### Out-of-Scope Use
237
+
238
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
239
+ -->
240
+
241
+ ## Evaluation
242
+
243
+ ### Metrics
244
+
245
+ #### Semantic Similarity
246
+
247
+ * Dataset: `example-dev`
248
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
249
+
250
+ | Metric | Value |
251
+ |:--------------------|:-----------|
252
+ | pearson_cosine | 0.4774 |
253
+ | **spearman_cosine** | **0.4969** |
254
+
255
+ <!--
256
+ ## Bias, Risks and Limitations
257
+
258
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
259
+ -->
260
+
261
+ <!--
262
+ ### Recommendations
263
+
264
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
265
+ -->
266
+
267
+ ## Training Details
268
+
269
+ ### Training Dataset
270
+
271
+ #### Unnamed Dataset
272
+
273
+
274
+ * Size: 63,802 training samples
275
+ * Columns: <code>doc</code>, <code>candidate</code>, and <code>label</code>
276
+ * Approximate statistics based on the first 1000 samples:
277
+ | | doc | candidate | label |
278
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
279
+ | type | string | string | int |
280
+ | details | <ul><li>min: 3 tokens</li><li>mean: 14.82 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.58 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>0: ~85.20%</li><li>1: ~14.80%</li></ul> |
281
+ * Samples:
282
+ | doc | candidate | label |
283
+ |:-------------------------------------------------------|:-----------------------------------------------------------------------|:---------------|
284
+ | <code>массажер xiaomi massage gun eu bhr5608eu </code> | <code>перкуссионный массажер xiaomi massage gun mini bhr6083gl </code> | <code>0</code> |
285
+ | <code>безударная дрель ingco ed50028 </code> | <code>ударная дрель ingco id211002 </code> | <code>0</code> |
286
+ | <code>жидкость old smuggler 30мл 20мг </code> | <code>жидкость old smuggler salt 30ml marlboro 20mg</code> | <code>0</code> |
287
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
288
+ ```json
289
+ {
290
+ "scale": 20.0,
291
+ "similarity_fct": "pairwise_cos_sim"
292
+ }
293
+ ```
294
+
295
+ ### Evaluation Dataset
296
+
297
+ #### Unnamed Dataset
298
+
299
+
300
+ * Size: 7,090 evaluation samples
301
+ * Columns: <code>doc</code>, <code>candidate</code>, and <code>label</code>
302
+ * Approximate statistics based on the first 1000 samples:
303
+ | | doc | candidate | label |
304
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
305
+ | type | string | string | int |
306
+ | details | <ul><li>min: 4 tokens</li><li>mean: 14.91 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.56 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>0: ~84.20%</li><li>1: ~15.80%</li></ul> |
307
+ * Samples:
308
+ | doc | candidate | label |
309
+ |:--------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:---------------|
310
+ | <code>круглое пляжное парео селфи коврик пляжная подстилка пляжное покрывало пляжный коврик пироженко </code> | <code>круглое пляжное парео селфи коврик пляжная подстилка пляжное покрывало пляжный коврик клубника </code> | <code>0</code> |
311
+ | <code>аккумулятор батарея для ноутбука asus g751 </code> | <code>аккумулятор батарея для ноутбука asus g75 series</code> | <code>0</code> |
312
+ | <code>миксер bosch mfq3520 mfq 3520 </code> | <code>миксер bosch mfq 4020 </code> | <code>0</code> |
313
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
314
+ ```json
315
+ {
316
+ "scale": 20.0,
317
+ "similarity_fct": "pairwise_cos_sim"
318
+ }
319
+ ```
320
+
321
+ ### Training Hyperparameters
322
+ #### Non-Default Hyperparameters
323
+
324
+ - `eval_strategy`: steps
325
+ - `per_device_train_batch_size`: 16
326
+ - `per_device_eval_batch_size`: 16
327
+ - `num_train_epochs`: 2
328
+ - `lr_scheduler_type`: cosine
329
+ - `warmup_ratio`: 0.1
330
+ - `load_best_model_at_end`: True
331
+ - `batch_sampler`: no_duplicates
332
+
333
+ #### All Hyperparameters
334
+ <details><summary>Click to expand</summary>
335
+
336
+ - `overwrite_output_dir`: False
337
+ - `do_predict`: False
338
+ - `eval_strategy`: steps
339
+ - `prediction_loss_only`: True
340
+ - `per_device_train_batch_size`: 16
341
+ - `per_device_eval_batch_size`: 16
342
+ - `per_gpu_train_batch_size`: None
343
+ - `per_gpu_eval_batch_size`: None
344
+ - `gradient_accumulation_steps`: 1
345
+ - `eval_accumulation_steps`: None
346
+ - `torch_empty_cache_steps`: None
347
+ - `learning_rate`: 5e-05
348
+ - `weight_decay`: 0.0
349
+ - `adam_beta1`: 0.9
350
+ - `adam_beta2`: 0.999
351
+ - `adam_epsilon`: 1e-08
352
+ - `max_grad_norm`: 1.0
353
+ - `num_train_epochs`: 2
354
+ - `max_steps`: -1
355
+ - `lr_scheduler_type`: cosine
356
+ - `lr_scheduler_kwargs`: {}
357
+ - `warmup_ratio`: 0.1
358
+ - `warmup_steps`: 0
359
+ - `log_level`: passive
360
+ - `log_level_replica`: warning
361
+ - `log_on_each_node`: True
362
+ - `logging_nan_inf_filter`: True
363
+ - `save_safetensors`: True
364
+ - `save_on_each_node`: False
365
+ - `save_only_model`: False
366
+ - `restore_callback_states_from_checkpoint`: False
367
+ - `no_cuda`: False
368
+ - `use_cpu`: False
369
+ - `use_mps_device`: False
370
+ - `seed`: 42
371
+ - `data_seed`: None
372
+ - `jit_mode_eval`: False
373
+ - `use_ipex`: False
374
+ - `bf16`: False
375
+ - `fp16`: False
376
+ - `fp16_opt_level`: O1
377
+ - `half_precision_backend`: auto
378
+ - `bf16_full_eval`: False
379
+ - `fp16_full_eval`: False
380
+ - `tf32`: None
381
+ - `local_rank`: 0
382
+ - `ddp_backend`: None
383
+ - `tpu_num_cores`: None
384
+ - `tpu_metrics_debug`: False
385
+ - `debug`: []
386
+ - `dataloader_drop_last`: False
387
+ - `dataloader_num_workers`: 0
388
+ - `dataloader_prefetch_factor`: None
389
+ - `past_index`: -1
390
+ - `disable_tqdm`: False
391
+ - `remove_unused_columns`: True
392
+ - `label_names`: None
393
+ - `load_best_model_at_end`: True
394
+ - `ignore_data_skip`: False
395
+ - `fsdp`: []
396
+ - `fsdp_min_num_params`: 0
397
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
398
+ - `fsdp_transformer_layer_cls_to_wrap`: None
399
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
400
+ - `deepspeed`: None
401
+ - `label_smoothing_factor`: 0.0
402
+ - `optim`: adamw_torch
403
+ - `optim_args`: None
404
+ - `adafactor`: False
405
+ - `group_by_length`: False
406
+ - `length_column_name`: length
407
+ - `ddp_find_unused_parameters`: None
408
+ - `ddp_bucket_cap_mb`: None
409
+ - `ddp_broadcast_buffers`: False
410
+ - `dataloader_pin_memory`: True
411
+ - `dataloader_persistent_workers`: False
412
+ - `skip_memory_metrics`: True
413
+ - `use_legacy_prediction_loop`: False
414
+ - `push_to_hub`: False
415
+ - `resume_from_checkpoint`: None
416
+ - `hub_model_id`: None
417
+ - `hub_strategy`: every_save
418
+ - `hub_private_repo`: False
419
+ - `hub_always_push`: False
420
+ - `gradient_checkpointing`: False
421
+ - `gradient_checkpointing_kwargs`: None
422
+ - `include_inputs_for_metrics`: False
423
+ - `include_for_metrics`: []
424
+ - `eval_do_concat_batches`: True
425
+ - `fp16_backend`: auto
426
+ - `push_to_hub_model_id`: None
427
+ - `push_to_hub_organization`: None
428
+ - `mp_parameters`:
429
+ - `auto_find_batch_size`: False
430
+ - `full_determinism`: False
431
+ - `torchdynamo`: None
432
+ - `ray_scope`: last
433
+ - `ddp_timeout`: 1800
434
+ - `torch_compile`: False
435
+ - `torch_compile_backend`: None
436
+ - `torch_compile_mode`: None
437
+ - `dispatch_batches`: None
438
+ - `split_batches`: None
439
+ - `include_tokens_per_second`: False
440
+ - `include_num_input_tokens_seen`: False
441
+ - `neftune_noise_alpha`: None
442
+ - `optim_target_modules`: None
443
+ - `batch_eval_metrics`: False
444
+ - `eval_on_start`: False
445
+ - `use_liger_kernel`: False
446
+ - `eval_use_gather_object`: False
447
+ - `average_tokens_across_devices`: False
448
+ - `prompts`: None
449
+ - `batch_sampler`: no_duplicates
450
+ - `multi_dataset_batch_sampler`: proportional
451
+
452
+ </details>
453
+
454
+ ### Training Logs
455
+ | Epoch | Step | Training Loss | Validation Loss | example-dev_spearman_cosine |
456
+ |:------:|:----:|:-------------:|:---------------:|:---------------------------:|
457
+ | 0 | 0 | - | - | 0.1562 |
458
+ | 0.1254 | 500 | 4.2363 | 3.5101 | 0.3313 |
459
+ | 0.2508 | 1000 | 3.0049 | 2.8592 | 0.4536 |
460
+ | 0.3761 | 1500 | 2.6306 | 2.8977 | 0.4704 |
461
+ | 0.5015 | 2000 | 2.6472 | 2.6703 | 0.4827 |
462
+ | 0.6269 | 2500 | 2.6626 | 2.6757 | 0.4837 |
463
+ | 0.7523 | 3000 | 2.6137 | 2.6397 | 0.4883 |
464
+ | 0.8776 | 3500 | 2.676 | 2.5394 | 0.4936 |
465
+ | 1.0030 | 4000 | 2.4997 | 2.5984 | 0.4931 |
466
+ | 1.1284 | 4500 | 2.4901 | 2.6219 | 0.4946 |
467
+ | 1.2538 | 5000 | 2.4293 | 2.6319 | 0.4943 |
468
+ | 1.3791 | 5500 | 2.3914 | 2.7122 | 0.4936 |
469
+ | 1.5045 | 6000 | 2.465 | 2.6573 | 0.4970 |
470
+ | 1.6299 | 6500 | 2.5711 | 2.6388 | 0.4965 |
471
+ | 1.7553 | 7000 | 2.5012 | 2.6323 | 0.4967 |
472
+ | 1.8806 | 7500 | 2.5775 | 2.6231 | 0.4969 |
473
+
474
+
475
+ ### Framework Versions
476
+ - Python: 3.10.14
477
+ - Sentence Transformers: 3.3.1
478
+ - Transformers: 4.46.3
479
+ - PyTorch: 2.4.0
480
+ - Accelerate: 0.34.2
481
+ - Datasets: 3.0.1
482
+ - Tokenizers: 0.20.0
483
+
484
+ ## Citation
485
+
486
+ ### BibTeX
487
+
488
+ #### Sentence Transformers
489
+ ```bibtex
490
+ @inproceedings{reimers-2019-sentence-bert,
491
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
492
+ author = "Reimers, Nils and Gurevych, Iryna",
493
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
494
+ month = "11",
495
+ year = "2019",
496
+ publisher = "Association for Computational Linguistics",
497
+ url = "https://arxiv.org/abs/1908.10084",
498
+ }
499
+ ```
500
+
501
+ #### CoSENTLoss
502
+ ```bibtex
503
+ @online{kexuefm-8847,
504
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
505
+ author={Su Jianlin},
506
+ year={2022},
507
+ month={Jan},
508
+ url={https://kexue.fm/archives/8847},
509
+ }
510
+ ```
511
+
512
+ <!--
513
+ ## Glossary
514
+
515
+ *Clearly define terms in order to be accessible across audiences.*
516
+ -->
517
+
518
+ <!--
519
+ ## Model Card Authors
520
+
521
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
522
+ -->
523
+
524
+ <!--
525
+ ## Model Card Contact
526
+
527
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
528
+ -->
config.json ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "jinaai/jina-embeddings-v3",
3
+ "architectures": [
4
+ "XLMRobertaLoRA"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "auto_map": {
8
+ "AutoConfig": "jinaai/xlm-roberta-flash-implementation--configuration_xlm_roberta.XLMRobertaFlashConfig",
9
+ "AutoModel": "jinaai/xlm-roberta-flash-implementation--modeling_lora.XLMRobertaLoRA",
10
+ "AutoModelForMaskedLM": "jinaai/xlm-roberta-flash-implementation--modeling_xlm_roberta.XLMRobertaForMaskedLM",
11
+ "AutoModelForPreTraining": "jinaai/xlm-roberta-flash-implementation--modeling_xlm_roberta.XLMRobertaForPreTraining"
12
+ },
13
+ "bos_token_id": 0,
14
+ "classifier_dropout": null,
15
+ "emb_pooler": null,
16
+ "eos_token_id": 2,
17
+ "hidden_act": "gelu",
18
+ "hidden_dropout_prob": 0.1,
19
+ "hidden_size": 1024,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 4096,
22
+ "layer_norm_eps": 1e-05,
23
+ "load_trained_adapters": true,
24
+ "lora_adaptations": [
25
+ "retrieval.query",
26
+ "retrieval.passage",
27
+ "separation",
28
+ "classification",
29
+ "text-matching"
30
+ ],
31
+ "lora_alpha": 1,
32
+ "lora_dropout_p": 0.0,
33
+ "lora_main_params_trainable": false,
34
+ "lora_rank": 4,
35
+ "matryoshka_dimensions": [
36
+ 32,
37
+ 64,
38
+ 128,
39
+ 256,
40
+ 512,
41
+ 768,
42
+ 1024
43
+ ],
44
+ "max_position_embeddings": 8194,
45
+ "model_type": "xlm-roberta",
46
+ "num_attention_heads": 16,
47
+ "num_hidden_layers": 24,
48
+ "output_past": true,
49
+ "pad_token_id": 1,
50
+ "position_embedding_type": "rotary",
51
+ "rotary_emb_base": 20000.0,
52
+ "task_instructions": {
53
+ "classification": "",
54
+ "retrieval.passage": "Represent the document for retrieval: ",
55
+ "retrieval.query": "Represent the query for retrieving evidence documents: ",
56
+ "separation": "",
57
+ "text-matching": ""
58
+ },
59
+ "torch_dtype": "float32",
60
+ "transformers_version": "4.46.3",
61
+ "truncate_dim": null,
62
+ "type_vocab_size": 1,
63
+ "use_cache": false,
64
+ "use_flash_attn": false,
65
+ "use_reentrant": false,
66
+ "vocab_size": 250002
67
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.3",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {
8
+ "retrieval.query": "Represent the query for retrieving evidence documents: ",
9
+ "retrieval.passage": "Represent the document for retrieval: ",
10
+ "separation": "",
11
+ "classification": "",
12
+ "text-matching": ""
13
+ },
14
+ "default_prompt_name": null,
15
+ "similarity_fn_name": "cosine"
16
+ }
custom_st.py ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import logging
3
+ import os
4
+ from io import BytesIO
5
+ from typing import Any, Dict, List, Optional, Tuple, Union
6
+
7
+ import torch
8
+ from torch import nn
9
+ from transformers import AutoConfig, AutoModel, AutoTokenizer
10
+
11
+ logger = logging.getLogger(__name__)
12
+
13
+
14
+ class Transformer(nn.Module):
15
+ """Huggingface AutoModel to generate token embeddings.
16
+ Loads the correct class, e.g. BERT / RoBERTa etc.
17
+
18
+ Args:
19
+ model_name_or_path: Huggingface models name
20
+ (https://huggingface.co/models)
21
+ max_seq_length: Truncate any inputs longer than max_seq_length
22
+ model_args: Keyword arguments passed to the Huggingface
23
+ Transformers model
24
+ tokenizer_args: Keyword arguments passed to the Huggingface
25
+ Transformers tokenizer
26
+ config_args: Keyword arguments passed to the Huggingface
27
+ Transformers config
28
+ cache_dir: Cache dir for Huggingface Transformers to store/load
29
+ models
30
+ do_lower_case: If true, lowercases the input (independent if the
31
+ model is cased or not)
32
+ tokenizer_name_or_path: Name or path of the tokenizer. When
33
+ None, then model_name_or_path is used
34
+ """
35
+
36
+ save_in_root: bool = True
37
+
38
+ def __init__(
39
+ self,
40
+ model_name_or_path: str,
41
+ max_seq_length: int = None,
42
+ model_args: Dict[str, Any] = None,
43
+ tokenizer_args: Dict[str, Any] = None,
44
+ config_args: Dict[str, Any] = None,
45
+ cache_dir: str = None,
46
+ do_lower_case: bool = False,
47
+ tokenizer_name_or_path: str = None,
48
+ **kwargs,
49
+ ) -> None:
50
+ super().__init__()
51
+ self.config_keys = ["max_seq_length", "do_lower_case"]
52
+ self.do_lower_case = do_lower_case
53
+ if model_args is None:
54
+ model_args = {}
55
+ if tokenizer_args is None:
56
+ tokenizer_args = {}
57
+ if config_args is None:
58
+ config_args = {}
59
+
60
+ if kwargs.get("backend", "torch") != "torch":
61
+ logger.warning(
62
+ f'"jinaai/jina-embeddings-v3" is currently not compatible with the {kwargs["backend"]} backend. '
63
+ 'Continuing with the "torch" backend.'
64
+ )
65
+
66
+ self.config = AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir)
67
+
68
+ self._lora_adaptations = self.config.lora_adaptations
69
+ if (
70
+ not isinstance(self._lora_adaptations, list)
71
+ or len(self._lora_adaptations) < 1
72
+ ):
73
+ raise ValueError(
74
+ f"`lora_adaptations` must be a list and contain at least one element"
75
+ )
76
+ self._adaptation_map = {
77
+ name: idx for idx, name in enumerate(self._lora_adaptations)
78
+ }
79
+
80
+ self.default_task = model_args.pop('default_task', None)
81
+
82
+ self.auto_model = AutoModel.from_pretrained(model_name_or_path, config=self.config, cache_dir=cache_dir, **model_args)
83
+
84
+ if max_seq_length is not None and "model_max_length" not in tokenizer_args:
85
+ tokenizer_args["model_max_length"] = max_seq_length
86
+ self.tokenizer = AutoTokenizer.from_pretrained(
87
+ tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path,
88
+ cache_dir=cache_dir,
89
+ **tokenizer_args,
90
+ )
91
+
92
+ # No max_seq_length set. Try to infer from model
93
+ if max_seq_length is None:
94
+ if (
95
+ hasattr(self.auto_model, "config")
96
+ and hasattr(self.auto_model.config, "max_position_embeddings")
97
+ and hasattr(self.tokenizer, "model_max_length")
98
+ ):
99
+ max_seq_length = min(self.auto_model.config.max_position_embeddings, self.tokenizer.model_max_length)
100
+
101
+ self.max_seq_length = max_seq_length
102
+
103
+ if tokenizer_name_or_path is not None:
104
+ self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__
105
+
106
+
107
+ @property
108
+ def default_task(self):
109
+ return self._default_task
110
+
111
+ @default_task.setter
112
+ def default_task(self, task: Union[None, str]):
113
+ self._validate_task(task)
114
+ self._default_task = task
115
+
116
+
117
+ def _validate_task(self, task: str):
118
+ if task and task not in self._lora_adaptations:
119
+ raise ValueError(
120
+ f"Unsupported task '{task}'. "
121
+ f"Supported tasks are: {', '.join(self.config.lora_adaptations)}. "
122
+ f"Alternatively, don't pass the `task` argument to disable LoRA."
123
+ )
124
+
125
+ def forward(
126
+ self, features: Dict[str, torch.Tensor], task: Optional[str] = None
127
+ ) -> Dict[str, torch.Tensor]:
128
+ """Returns token_embeddings, cls_token"""
129
+ self._validate_task(task)
130
+ task = task or self.default_task
131
+ adapter_mask = None
132
+ if task:
133
+ task_id = self._adaptation_map[task]
134
+ num_examples = features['input_ids'].size(0)
135
+ adapter_mask = torch.full(
136
+ (num_examples,), task_id, dtype=torch.int32, device=features['input_ids'].device
137
+ )
138
+
139
+ lora_arguments = (
140
+ {"adapter_mask": adapter_mask} if adapter_mask is not None else {}
141
+ )
142
+ features.pop('prompt_length', None)
143
+ output_states = self.auto_model.forward(**features, **lora_arguments, return_dict=False)
144
+ output_tokens = output_states[0]
145
+ features.update({"token_embeddings": output_tokens, "attention_mask": features["attention_mask"]})
146
+ return features
147
+
148
+ def get_word_embedding_dimension(self) -> int:
149
+ return self.auto_model.config.hidden_size
150
+
151
+ def tokenize(
152
+ self,
153
+ texts: Union[List[str], List[dict], List[Tuple[str, str]]],
154
+ padding: Union[str, bool] = True
155
+ ) -> Dict[str, torch.Tensor]:
156
+ """Tokenizes a text and maps tokens to token-ids"""
157
+ output = {}
158
+ if isinstance(texts[0], str):
159
+ to_tokenize = [texts]
160
+ elif isinstance(texts[0], dict):
161
+ to_tokenize = []
162
+ output["text_keys"] = []
163
+ for lookup in texts:
164
+ text_key, text = next(iter(lookup.items()))
165
+ to_tokenize.append(text)
166
+ output["text_keys"].append(text_key)
167
+ to_tokenize = [to_tokenize]
168
+ else:
169
+ batch1, batch2 = [], []
170
+ for text_tuple in texts:
171
+ batch1.append(text_tuple[0])
172
+ batch2.append(text_tuple[1])
173
+ to_tokenize = [batch1, batch2]
174
+
175
+ # strip
176
+ to_tokenize = [[str(s).strip() for s in col] for col in to_tokenize]
177
+
178
+ # Lowercase
179
+ if self.do_lower_case:
180
+ to_tokenize = [[s.lower() for s in col] for col in to_tokenize]
181
+
182
+ output.update(
183
+ self.tokenizer(
184
+ *to_tokenize,
185
+ padding=padding,
186
+ truncation="longest_first",
187
+ return_tensors="pt",
188
+ max_length=self.max_seq_length,
189
+ )
190
+ )
191
+ return output
192
+
193
+ def get_config_dict(self) -> Dict[str, Any]:
194
+ return {key: self.__dict__[key] for key in self.config_keys}
195
+
196
+ def save(self, output_path: str, safe_serialization: bool = True) -> None:
197
+ self.auto_model.save_pretrained(output_path, safe_serialization=safe_serialization)
198
+ self.tokenizer.save_pretrained(output_path)
199
+
200
+ with open(os.path.join(output_path, "sentence_bert_config.json"), "w") as fOut:
201
+ json.dump(self.get_config_dict(), fOut, indent=2)
202
+
203
+
204
+ @classmethod
205
+ def load(cls, input_path: str) -> "Transformer":
206
+ # Old classes used other config names than 'sentence_bert_config.json'
207
+ for config_name in [
208
+ "sentence_bert_config.json",
209
+ "sentence_roberta_config.json",
210
+ "sentence_distilbert_config.json",
211
+ "sentence_camembert_config.json",
212
+ "sentence_albert_config.json",
213
+ "sentence_xlm-roberta_config.json",
214
+ "sentence_xlnet_config.json",
215
+ ]:
216
+ sbert_config_path = os.path.join(input_path, config_name)
217
+ if os.path.exists(sbert_config_path):
218
+ break
219
+
220
+ with open(sbert_config_path) as fIn:
221
+ config = json.load(fIn)
222
+ # Don't allow configs to set trust_remote_code
223
+ if "model_args" in config and "trust_remote_code" in config["model_args"]:
224
+ config["model_args"].pop("trust_remote_code")
225
+ if "tokenizer_args" in config and "trust_remote_code" in config["tokenizer_args"]:
226
+ config["tokenizer_args"].pop("trust_remote_code")
227
+ if "config_args" in config and "trust_remote_code" in config["config_args"]:
228
+ config["config_args"].pop("trust_remote_code")
229
+ return cls(model_name_or_path=input_path, **config)
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec2a7fec4584bf58064ee4197578edc9993e4e7c6fc6adb03fc57a0088770289
3
+ size 2289306368
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "transformer",
5
+ "path": "",
6
+ "type": "custom_st.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "pooler",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "normalizer",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8194,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e19cd8c08f528b481e909f73dbd1fd62b1e8b1117579ba205e477801237f9e0
3
+ size 17082988
tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8194,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "XLMRobertaTokenizer",
53
+ "unk_token": "<unk>"
54
+ }