File size: 3,241 Bytes
d256d9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
license: mit
base_model: MoritzLaurer/mDeBERTa-v3-base-mnli-xnli
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: cs221-mDeBERTa-v3-base-mnli-xnli-finetuned-20-epochs
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cs221-mDeBERTa-v3-base-mnli-xnli-finetuned-20-epochs

This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-mnli-xnli](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5558
- F1: 0.7088
- Roc Auc: 0.7803
- Accuracy: 0.3953

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
| 0.6081        | 1.0   | 64   | 0.5854          | 0.4511 | 0.6250  | 0.1759   |
| 0.5318        | 2.0   | 128  | 0.5056          | 0.5413 | 0.6739  | 0.2905   |
| 0.4634        | 3.0   | 192  | 0.4846          | 0.6178 | 0.7158  | 0.3103   |
| 0.417         | 4.0   | 256  | 0.4696          | 0.6609 | 0.7452  | 0.3340   |
| 0.3762        | 5.0   | 320  | 0.4645          | 0.6707 | 0.7522  | 0.3577   |
| 0.3187        | 6.0   | 384  | 0.4622          | 0.6802 | 0.7591  | 0.3636   |
| 0.2801        | 7.0   | 448  | 0.4691          | 0.6953 | 0.7702  | 0.3557   |
| 0.2593        | 8.0   | 512  | 0.4847          | 0.6833 | 0.7614  | 0.3498   |
| 0.2278        | 9.0   | 576  | 0.4878          | 0.6941 | 0.7691  | 0.3775   |
| 0.1917        | 10.0  | 640  | 0.5014          | 0.7001 | 0.7735  | 0.3834   |
| 0.1761        | 11.0  | 704  | 0.5298          | 0.7020 | 0.7747  | 0.3893   |
| 0.1494        | 12.0  | 768  | 0.5417          | 0.7009 | 0.7741  | 0.3972   |
| 0.1422        | 13.0  | 832  | 0.5437          | 0.7074 | 0.7791  | 0.3953   |
| 0.1132        | 14.0  | 896  | 0.5602          | 0.6965 | 0.7709  | 0.3794   |
| 0.108         | 15.0  | 960  | 0.5558          | 0.7088 | 0.7803  | 0.3953   |
| 0.0945        | 16.0  | 1024 | 0.5700          | 0.7026 | 0.7753  | 0.3913   |
| 0.1004        | 17.0  | 1088 | 0.5748          | 0.7055 | 0.7776  | 0.3953   |
| 0.0857        | 18.0  | 1152 | 0.5733          | 0.7056 | 0.7776  | 0.3913   |
| 0.0893        | 19.0  | 1216 | 0.5731          | 0.7032 | 0.7759  | 0.3913   |
| 0.0881        | 20.0  | 1280 | 0.5735          | 0.7040 | 0.7765  | 0.3913   |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0