File size: 2,593 Bytes
3beab90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
library_name: transformers
license: mit
base_model: Davlan/afro-xlmr-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: afro-xlmr-base-ptbr-MICRO
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# afro-xlmr-base-ptbr-MICRO
This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5573
- F1: 0.6760
- Roc Auc: 0.8141
- Accuracy: 0.5860
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:|
| 0.2255 | 1.0 | 728 | 0.2284 | 0.6554 | 0.7738 | 0.6118 |
| 0.1591 | 2.0 | 1456 | 0.2288 | 0.6718 | 0.8000 | 0.6183 |
| 0.1038 | 3.0 | 2184 | 0.2640 | 0.6774 | 0.8045 | 0.6129 |
| 0.0506 | 4.0 | 2912 | 0.3305 | 0.6603 | 0.8168 | 0.5570 |
| 0.0459 | 5.0 | 3640 | 0.3809 | 0.6521 | 0.8088 | 0.5505 |
| 0.0222 | 6.0 | 4368 | 0.3868 | 0.6463 | 0.7892 | 0.5720 |
| 0.0179 | 7.0 | 5096 | 0.4026 | 0.6816 | 0.8139 | 0.6 |
| 0.0087 | 8.0 | 5824 | 0.4520 | 0.6694 | 0.8083 | 0.5871 |
| 0.0058 | 9.0 | 6552 | 0.4769 | 0.6703 | 0.8048 | 0.5882 |
| 0.0064 | 10.0 | 7280 | 0.4871 | 0.6841 | 0.8187 | 0.5946 |
| 0.0025 | 11.0 | 8008 | 0.5414 | 0.6611 | 0.8152 | 0.5688 |
| 0.0042 | 12.0 | 8736 | 0.5374 | 0.6778 | 0.8154 | 0.5925 |
| 0.0013 | 13.0 | 9464 | 0.5331 | 0.6744 | 0.8081 | 0.5968 |
| 0.0048 | 14.0 | 10192 | 0.5573 | 0.6760 | 0.8141 | 0.5860 |
### Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
|