Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- de
|
6 |
+
---
|
7 |
+
|
8 |
+
# 🛡️ MLP Cybersecurity Classifier
|
9 |
+
|
10 |
+
This repository hosts a lightweight `scikit-learn`-based MLP classifier trained to distinguish cybersecurity-related content from other text, using sentence-transformer embeddings. It supports English and German input texts.
|
11 |
+
|
12 |
+
## 📦 Model Details
|
13 |
+
|
14 |
+
- **Architecture**: `MLPClassifier` with hidden layers `(128, 64)`
|
15 |
+
- **Embedding model**: [`intfloat/multilingual-e5-large`](https://huggingface.co/intfloat/multilingual-e5-large)
|
16 |
+
- **Input**: Cleaned article (removed stopwords) or report text
|
17 |
+
- **Output**: Binary label (e.g., `Cybersecurity`, `Not Cybersecurity`)
|
18 |
+
- **Languages**: English, German
|
19 |
+
|
20 |
+
## 🔧 Usage
|
21 |
+
|
22 |
+
```python
|
23 |
+
from sentence_transformers import SentenceTransformer
|
24 |
+
from sklearn.model_selection import train_test_split
|
25 |
+
from sklearn.preprocessing import LabelEncoder
|
26 |
+
import pandas as pd
|
27 |
+
import joblib
|
28 |
+
from huggingface_hub import hf_hub_download
|
29 |
+
|
30 |
+
# Load your cleaned dataset
|
31 |
+
df = pd.read_csv("your_dataset.csv") # Requires 'clean_text' and 'label' columns
|
32 |
+
|
33 |
+
# Load the sentence transformer
|
34 |
+
embedder = SentenceTransformer("intfloat/multilingual-e5-large")
|
35 |
+
|
36 |
+
# Train-test split
|
37 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
38 |
+
df["clean_text"],
|
39 |
+
df["label"],
|
40 |
+
test_size=0.05,
|
41 |
+
stratify=df["label"],
|
42 |
+
random_state=42
|
43 |
+
)
|
44 |
+
|
45 |
+
# Encode labels
|
46 |
+
label_encoder = LabelEncoder()
|
47 |
+
y_train_enc = label_encoder.fit_transform(y_train)
|
48 |
+
y_test_enc = label_encoder.transform(y_test)
|
49 |
+
|
50 |
+
# Generate sentence embeddings
|
51 |
+
X_train_emb = embedder.encode(X_train.tolist(), convert_to_numpy=True, show_progress_bar=True)
|
52 |
+
X_test_emb = embedder.encode(X_test.tolist(), convert_to_numpy=True, show_progress_bar=True)
|
53 |
+
|
54 |
+
# Load the trained classifier
|
55 |
+
model_path = hf_hub_download(repo_id="your-selfconstruct3d/cybersec-classifier", filename="cybersec_classifier.pkl")
|
56 |
+
model = joblib.load(model_path)
|
57 |
+
|
58 |
+
# Predict
|
59 |
+
y_pred = model.predict(X_test_emb)
|