File size: 5,596 Bytes
8c5c9d3
 
ee43310
 
 
 
 
8c5c9d3
 
ee43310
8c5c9d3
ee43310
8c5c9d3
 
 
 
 
ee43310
8c5c9d3
ee43310
 
 
 
 
8c5c9d3
ee43310
8c5c9d3
ee43310
8c5c9d3
 
 
 
 
ee43310
8c5c9d3
ee43310
8c5c9d3
ee43310
8c5c9d3
 
 
ee43310
 
8c5c9d3
 
 
ee43310
8c5c9d3
 
 
ee43310
8c5c9d3
 
 
ee43310
 
dfd5c40
 
 
 
8c5c9d3
ee43310
dfd5c40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee43310
dfd5c40
ee43310
 
dfd5c40
 
8c5c9d3
ee43310
8c5c9d3
ee43310
8c5c9d3
dfd5c40
8c5c9d3
ee43310
8c5c9d3
ee43310
 
 
 
8c5c9d3
 
 
 
 
ee43310
 
8c5c9d3
 
 
ee43310
 
 
 
8c5c9d3
ee43310
8c5c9d3
ee43310
8c5c9d3
ee43310
 
8c5c9d3
ee43310
 
 
 
 
 
 
 
 
 
 
8c5c9d3
ee43310
 
 
8c5c9d3
 
ee43310
 
 
8c5c9d3
ee43310
 
 
 
8c5c9d3
ee43310
8c5c9d3
ee43310
8c5c9d3
ee43310
 
 
 
 
8c5c9d3
ee43310
8c5c9d3
ee43310
8c5c9d3
ee43310
 
8c5c9d3
ee43310
8c5c9d3
ee43310
8c5c9d3
ee43310
8c5c9d3
ee43310
8c5c9d3
 
 
ee43310
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
library_name: transformers
tags:
- cybersecurity
- mpnet
- classification
- fine-tuned
---

# Model Card for MPNet Cybersecurity Classifier

This is a fine-tuned MPNet model specialized for classifying cybersecurity threat groups based on textual descriptions of their tactics and techniques.

## Model Details

### Model Description

This model is a fine-tuned MPNet classifier specialized in categorizing cybersecurity threat groups based on textual descriptions of their tactics, techniques, and procedures (TTPs).

- **Developed by:** Dženan Hamzić
- **Model type:** Transformer-based classification model (MPNet)
- **Language(s) (NLP):** English
- **License:** Apache-2.0
- **Finetuned from model:** microsoft/mpnet-base (with intermediate MLM fine-tuning)

### Model Sources

- **Base Model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base)

## Uses

### Direct Use

This model classifies textual cybersecurity descriptions into known cybersecurity threat groups.

### Downstream Use

Integration into Cyber Threat Intelligence platforms, SOC incident analysis tools, and automated threat detection systems.

### Out-of-Scope Use

- General language tasks unrelated to cybersecurity
- Tasks outside the cybersecurity domain

## Bias, Risks, and Limitations

This model specializes in cybersecurity contexts. Predictions for unrelated contexts may be inaccurate.

### Recommendations

Always verify predictions with cybersecurity analysts before using in critical decision-making scenarios.

## How to Get Started with the Model

```python
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch.optim as optim
import numpy as np

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load explicitly your fine-tuned MPNet model
classifier_model = AutoModelForSequenceClassification.from_pretrained("selfconstruct3d/AttackGroup-MPNET").to(device)

# Load explicitly your tokenizer
tokenizer = AutoTokenizer.from_pretrained("selfconstruct3d/AttackGroup-MPNET")

from huggingface_hub import hf_hub_download
import json

label_to_groupid_file = hf_hub_download(
    repo_id="selfconstruct3d/AttackGroup-MPNET",
    filename="label_to_groupid.json"
)

with open(label_to_groupid_file, "r") as f:
    label_to_groupid = json.load(f)

def predict_group(sentence):
    classifier_model.eval()
    encoding = tokenizer(
        sentence,
        truncation=True,
        padding="max_length",
        max_length=128,
        return_tensors="pt"
    )
    input_ids = encoding["input_ids"].to(device)
    attention_mask = encoding["attention_mask"].to(device)

    with torch.no_grad():
        outputs = classifier_model(input_ids=input_ids, attention_mask=attention_mask)
        logits = outputs.logits
        predicted_label = torch.argmax(logits, dim=1).cpu().item()

    predicted_groupid = label_to_groupid[str(predicted_label)]
    return predicted_groupid

# Example usage explicitly:
sentence = "APT38 has used phishing emails with malicious links to distribute malware."
predicted_class = predict_group(sentence)
print(f"Predicted GroupID: {predicted_class}")
```
Predicted GroupID: G0001


## Training Details

### Training Data

To be anounced...

### Training Procedure

- Fine-tuned from: MLM fine-tuned MPNet ("mpnet_mlm_cyber_finetuned-v2")
- Epochs: 20
- Learning rate: 5e-6
- Batch size: 16

## Evaluation

### Testing Data, Factors & Metrics

- **Testing Data:** Stratified sample from original dataset.
- **Metrics:** Accuracy, Weighted F1 Score

### Results

| Metric                 | Value   |
|------------------------|---------|
| Classification Accuracy (Test) | 0.7161 |
| Weighted F1 Score      | [More Information Needed] |

### Single Prediction Example

```python

# Create explicit mapping from numeric labels to original GroupIDs
label_to_groupid = dict(enumerate(train_df["GroupID"].astype("category").cat.categories))

def predict_group(sentence):
    classifier_model.eval()
    encoding = tokenizer(
        sentence,
        truncation=True,
        padding="max_length",
        max_length=128,
        return_tensors="pt"
    )
    input_ids = encoding["input_ids"].to(device)
    attention_mask = encoding["attention_mask"].to(device)

    with torch.no_grad():
        logits = classifier_model(input_ids, attention_mask)
        predicted_label = torch.argmax(logits, dim=1).cpu().item()


    # Explicitly convert numeric label to original GroupID
    predicted_groupid = label_to_groupid[predicted_label]
    return predicted_groupid

sentence = "APT38 has used phishing emails with malicious links to distribute malware."
predicted_class = predict_group(sentence)
print(f"Predicted GroupID: {predicted_class}")  # e.g., Predicted GroupID: G0081
```

## Environmental Impact

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute).

- **Hardware Type:** [To be filled by user]
- **Hours used:** [To be filled by user]
- **Cloud Provider:** [To be filled by user]
- **Compute Region:** [To be filled by user]
- **Carbon Emitted:** [To be filled by user]

## Technical Specifications

### Model Architecture

- MPNet architecture with classification head (768 -> 512 -> num_labels)
- Last 10 transformer layers fine-tuned explicitly

## Environmental Impact

Carbon emissions should be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute).

## Model Card Authors

- Dženan Hamzić

## Model Card Contact

- [More Information Needed]